
UNIVERSITY OF OSLO

Department of Informatics

On the practical use

of Software Design

Patterns

Dr. Scient. Thesis

Marek Vokáč

November 1, 2004

Abstract

This thesis investigates the empirical evidence for the usefulness of design
patterns, in the context of software maintenance. Advocates of design patterns
claim general benefits in the form of higher flexibility, easier maintenance and
reduced development time, though there is mostly only anecdotal evidence to
support these claims.

The thesis reports on empirical research that has been conducted in three
related areas: the effects of design patterns on maintenance effort and cor-
rectness; the connection between design patterns and corrective maintenance
needs, and the utility of design patterns in organizing the development pro-
cess.

The presence of design patterns in the code can have a significant effect on the
effort needed to perform maintenance tasks, and the correctness of the results.
The effects are strongly dependent on the expertise of the developers—a pat-
tern that is beneficial to an expert, may cause a sharp increase in effort and a
reduced correctness for a novice or intermediate developer. However, some
patterns are simple and intuitive enough that they provide benefits to all types
of developers, even those who lack knowledge of the particular pattern, or
even design patterns in general.

The presence of design patterns can also be correlated with the need for cor-
rective maintenance, i.e., the error rates in the parts of the code conforming to
the patterns, relative to the code at large. Some patterns are correlated with
complex program structures that are prone to errors, while other patterns re-
sult in simple, less connected structures with lower error rates. Assuming that
the patterns are used appropriately, this correlation can be used as a predictive
or diagnostic tool to determine areas of the code that need particular design
attention from expert developers.

Design patterns can also be used in the organization of the development team.
Teams are often organized around functional areas or around layers in the
code (such as a Web front end or a database-related back end). An alternative,
when the architecture of the system is expressed using patterns, is to organize
the team around the patterns themselves, so that individual developers work
with all the code involved in a pattern, across other boundaries. This can aid in
the implementation of complex architectures, for example J2EE applications.

Empirical evidence for these contributions was gathered through a combina-
tion of controlled experiments and case studies. Realism was ensured by using
paid, professional developers as experimental subjects. In the case studies, in-
dustrial projects were examined and a large scale analysis of industrial C++
code performed. Research methods in the field were advanced both by the
scale, design and realism of the experiment, and by the creation and valida-
tion of a tool for extracting design patterns from C++ code at a high precision
and speed.

i

ii

Acknowledgements

Thanks are due to my thesis supervisors Dag I. K. Sjøberg and Erik Arisholm.
Their trust in letting a student manage a large, complex and expensive exper-
iment laid the foundation for the whole thesis. Later discussions on methods
and article editing proved invaluable. So did the freedom to pursue the re-
search as I saw fit.

The Simula Research Laboratory is a unique institution, with the opportuni-
ties it offers and its emphasis on high quality research. Large experiments
with paid professional subjects depend on a flexible administration, a com-
petent technical staff and a funding model found nowhere else. Likewise,
studies of large code bases require good hardware.

My fellow students have provided both inspiration, valuable criticism and
support when it was most needed. Hopefully I have been able to give some-
thing similar in return.

SuperOffice ASA generously provided three years’ leave, to complete my
PhD, with a part-time position for the duration and a place to come back af-
terwards. This is not something to be taken for granted, and has provided the
security needed to embark on such a large project.

My family has put up with a great deal of overtime work, travel and mental
absences. Somehow we even managed to move to a new house in the middle
of it all, and passed our 10th anniversary intact.

Finally, a word is due to my late mother, who did not live to see the completion
of my degree. Her own PhD was completed in 1949, against a background of
interrupted schooling, years of forced labour and a war-torn Europe that did
not particularly favour Czech women taking degrees in English. Her mother
in turn obtained a PhD in medicine in 1915 in Brno. This family tradition
provided much of the inspiration and push to get me started. Claiming that
something was too hard for me would have sounded quite hollow in compar-
ison.

iii

iv

Contents

I Introduction and Summary 1

1 Introduction 3

1.1 The Languages of design 3

1.2 Software design as a ‘wicked’ problem 4

1.3 Design patterns . 7

1.4 Goals, contribution and thesis organization 9

2 Design Patterns 13

2.1 Historical background . 14

2.2 The evolution of software design patterns 16

2.2.1 Pattern forms . 17

2.3 Pattern languages . 20

3 Research methods in empirical software engineering 23

3.1 Science versus industrial practice 23

3.2 Empirical research on software engineering 25

3.3 Empirical research methods 27

3.3.1 Experiments in software engineering research . . 28

3.4 Empirical research on design patterns 32

3.5 Summary of research papers and methods 34

v

II Peer-reviewed papers 45

1 A controlled experiment comparing the maintainability of

programs designed with and without design Patterns—a repli-

cation in a real programming environment 47

1.1 Introduction . 50

1.2 The original experiment 51

1.2.1 Objectives and hypotheses 52

1.2.2 Variables . 52

1.2.3 Summary of programs and work tasks 54

1.2.4 Subjects, programs, tasks and groups 55

1.2.5 Analysis and statistical methods 55

1.3 Current replication . 57

1.3.1 Logging and data collection 58

1.3.2 Subject selection and background 58

1.3.3 Group assignment 59

1.3.4 Experiment conduct 60

1.3.5 Expectations and hypotheses 61

1.3.6 Model for analysis of time 61

1.3.7 Model for analysis of correctness 64

1.3.8 Reformulated hypotheses 65

1.4 Results . 66

1.4.1 Validation of raw data 66

1.4.2 Grading of correctness 67

1.4.3 Refinement of the analysis model 67

1.4.4 Effect of programming tool use 68

1.4.5 Summary of quantitative results 70

1.5 Discussion . 76

1.5.1 Observer: Stock Ticker (ST) 76

1.5.2 Composite and Visitor: Boolean Formulas (BO) . 78

1.5.3 Decorator: Communication Channels (CO) 81

vi

1.5.4 Composite and Abstract Factory: Graphics Li-

brary (GR) . 83

1.5.5 Summary of qualitative results 86

1.5.6 Other observed effects 87

1.6 Comparison with the original experiment 89

1.6.1 Base level and variance 90

1.6.2 Elapsed time . 91

1.6.3 Correctness . 92

1.6.4 Summary . 93

1.6.5 Lessons learned . 93

1.7 Methodological results . 94

1.7.1 Measurements . 94

1.7.2 Technical setup . 94

1.7.3 Programming environment 95

1.7.4 Big-bang experiments 95

1.7.5 Place of experiment 96

1.7.6 Recruitment and subject selection 96

1.7.7 Subject background mapping 97

1.7.8 Prequalification and blocking 98

1.7.9 Details matter . 98

1.8 Threats to validity . 99

1.8.1 Threats to internal validity 99

1.8.2 Threats to external validity 101

1.9 Conclusions . 104

2 Using a reference application with design patterns to produce

industrial software 111

2.1 Introduction . 114

2.2 Background and concepts 115

2.2.1 Forms of reuse . 115

2.2.2 Reference applications 116

2.2.3 Patterns versus code 117

vii

2.3 Research methods . 118

2.4 The studied Development project 119

2.4.1 The Pet Store reference application 120

2.4.2 Development methods 121

2.4.3 Functional requirements matching 122

2.4.4 Non-functional requirements matching 123

2.4.5 Application server compatibility 124

2.4.6 Other factors . 125

2.5 Results . 125

2.5.1 Project organization 126

2.5.2 Implementation . 127

2.5.3 Database structure and data security 127

2.5.4 Deployment . 128

2.6 Conclusions and future work 129

2.6.1 Positive experiences 130

2.6.2 Negative experiences 131

2.6.3 Conclusions . 131

2.6.4 Future work . 132

3 Defect frequency and design patterns: an empirical study of

industrial code 139

3.1 Introduction . 141

3.2 Related work . 142

3.3 Case study goals, subject and conduct 144

3.3.1 Design patterns . 144

3.3.2 The SuperOffice CRM5 product 148

3.3.3 Identifying design patterns in C++ code 150

3.3.4 Extracting defects and design patterns from the

CRM5 code . 156

3.4 Statistical model and quantitative results 156

3.4.1 A simple model . 157

3.4.2 A full model including interactions 160

viii

3.4.3 Final model . 162

3.4.4 Interpretation of results 162

3.5 Threats to validity . 166

3.6 Summary, conclusions and future work 169

3.6.1 Summary of results 169

3.6.2 Conclusions . 170

3.6.3 Future work . 170

4 An efficient tool for recovering design patterns from C++ code177

4.1 Introduction . 179

4.2 Existing tools and related work 180

4.3 Pattern structures and descriptions 184

4.3.1 Template Method 185

4.3.2 Observer . 187

4.3.3 Language-specific features 191

4.4 Tool goals and design . 192

4.4.1 Tool construction 192

4.5 Tool performance, recovery and precision 195

4.5.1 Performance . 195

4.5.2 Error rates . 197

4.5.3 False positives . 198

4.5.4 False negatives . 199

4.6 Summary and Future work 201

Bibliography 205

ix

x

PART I

INTRODUCTION AND SUMMARY

Chapter 1

Introduction

1.1 The Languages of design

The need to correctly design software was apparent from the birth of

modern computing. The precursors to the current electronic stored-

program computers were mechanical and electromechanical machines,

where the basic operations were part of the fundamental design. These

operations were then connected by semi-permanent wiring or through

plugboards. Additional human interaction was generally needed,

though this often took the form of more or less mechanical transfer of

stacks of cards from one machine to another. The process is nicely illus-

trated by Black (2002), who describes the effort needed to set up pro-

cessing of census data before and during World War II, and by Feynman

(1997), who describes a method of parallel computing using punched

cards of different colours to distinguish the threads.

The design of these processes was done by highly trained and skilled

specialists. Given the visibly high cost of change (including rewiring

dozens of machines), it was obviously crucial to arrive at a correct de-

sign in advance of the detailed set-up and production.

The advent of the electronic stored-program computer continued this

tradition. Computing time was scarce and expensive, and there were

severe limits on program size and data storage. Spending significant

time on design (on paper) made good economic sense.

With the arrival of a powerful microcomputer on virtually every desk-

3

top, this tradition was broken, for several reasons.

• Computing power is now essentially free. Every developer

“owns” the resources, and compiling or testing a program a

dozen times is free in terms of computing cost, if not in terms

of time.

• Program development has become a mass activity. Scripting lan-

guages like JavaScript and high-level languages such as Visual

Basic have seemingly made it possible for people to program

without spending years on training.

• Time to market pressure: with an increasing number of compa-

nies selling or in other ways being dependent on their software,

the pressure to deliver “working” software soon increases. In

the tradeoff between easily measurable delivery time and hard

to measure quality, quality will often lose.

In parallel with these developments there has been a growing empha-

sis on the need for proper design, in spite of the pressures to the con-

trary. Software is becoming immensely complex. Problems of increas-

ing size are being solved, and the underlying technology is growing in

complexity almost daily. Many different design methodologies and as-

sociated notations have been created and used. Lately there has been

a convergence towards UML (Object Management Group, 2004) as a

common notation for many design activities. There is less agreement

on process, with Agile/XP (Beck, 1999; Beck et al., 2001) and RUP (Ja-

cobson et al., 1999) representing “light” and “heavy” processes respec-

tively.

1.2 Software design as a ‘wicked’ problem

Rittel and Webber (1973) coined the term “wicked problem” to describe

problems (in social planning) that were not tractable by normal, analyt-

ical means. Peters and Tripp (1976) argued that software design often

represents ‘wicked’ problems. The characteristics of such problems are

worth considering, as they have a great impact on the way we should

expect to go about the design of solutions:

4

1. There is no definitive formulation of a wicked problem. Formu-

lating the problem and the solution are essentially the same thing.

Each attempt at creating a solution changes the understanding of

the problem.

2. Wicked problems have no stopping rule. Since you cannot define

the problem, it is difficult to tell when it is resolved. The problem

solving process ends when resources are depleted, stakeholders

lose interest or political realities change.

3. Solutions to wicked problems are not true-or-false but good-or-

bad. Since there are no unambiguous criteria for deciding if the

problem is resolved, getting all stakeholders to agree that a reso-

lution is good enough can be a challenge.

4. There is no immediate and no ultimate test of a solution to a

wicked problem. Solutions to wicked problems generate waves

of consequences, and it is impossible to know how all of the con-

sequences will eventually play out.

5. Every implemented solution to a wicked problem has conse-

quences. Once the web site is published or the new customer

service package goes live, you cannot take back what was on-line

or revert to the former customer database.

6. Wicked problems do not have a well-described set of potential

solutions. Various stakeholders will have differing views of ac-

ceptable solutions. It is a matter of judgment as to when enough

potential solutions have emerged and which should be pursued.

7. Every wicked problem is essentially unique. There are no classes

of solutions that can be applied to a specific case. “Part of the art

of dealing with wicked problems is the art of not knowing too

early what type of solution to apply.”

8. Every wicked problem can be considered a symptom of another

problem. A wicked problem is a set of interlocking issues and

constraints that change over time, embedded in a dynamic social

context.

9. The causes of a wicked problem can be explained in numerous

ways. There are many stakeholders who will have various and

5

changing ideas about what might be a problem, what might be

causing it, and how to resolve it.

10. The planner (designer) has no right to be wrong. A scientist is

expected to formulate hypothesis, which may or may not be sup-

portable by evidence. Designers do not have this luxury, they are

expected to get things right the first time.

The traditional waterfall model of development (DeGrace and Stahl,

1991) in many ways that assumes the problem to be solved is not

wicked. The model consists of a single run through a number of phases,

emphasizing the need to make detailed specifications on many levels,

followed by an implementation phase. During subsequent testing, con-

formance to the specification is verified and the system can then be

deployed—problem solved.

Since reality seldom is like this, other models have evolved. One can-

not escape the fact that any development project would like to proceed

from an initial point where the software does not exist, to some kind of

“final” point where it exists, works and is deployed. All models there-

fore contain elements of finding out what to do, doing it and testing

it, reminiscent of the waterfall model. What varies is the number, or-

der and repetition of the phases, as well as the criteria for terminating a

phase (functionality, quality, time). Thus we have Spiral (Boehm, 1986),

Evolutionary (Gilb, 1985), Incremental (Williams, 1975; Whitcomb and

Clark, 1989), Agile (Beck et al., 2001) and other process models.

A development process is not enough by itself to create software suc-

cessfully. The design of software is to a large extent concerned with

translating abstract requirements into a concrete implementation, an in-

tellectual activity that has so far eluded efforts to automate it on a large

scale. Several “paradigms”, such as Structured Programming (Your-

don, 1976) and Object-Oriented Analysis and Design (Booch, 1993)

have evolved to describe and define how design should be performed.

Another kind of assistance comes from ways of reusing ideas (as op-

posed to code) that have been proven in practice. This is the purpose

of Design Patterns.

6

1.3 Design patterns

Design Patterns in software engineering seek to capture field-proven

solutions to recurring problems. They are semi-formal descriptions that

describe a problem, the contexts in which it may appear, and outline a

solution and its consequences. A Design Pattern is not a rigorous recipe

to be followed to the letter, but it is more than just a loose suggestion.

Those patterns that have turned out to have a wide applicability have

become classics; others have been relegated to specialist areas or for-

gotten.

The crucial link between design patterns and wicked problems—

including software design—is that patterns are meant to be used flex-

ibly, adapting to the particular project, technology and other context

present. Well-described patterns also have something to say about the

consequences of using them. Thus, they are not absolute prescriptions

with rigorous criteria for when and how they should be used; this

would not match the reality of most software development, and cer-

tainly not the wicked problems that are often encountered.

There are dissenting voices to this interpretation of design patterns.

France et al. (2004) presented “a rigorous and practical technique for

specifying pattern solutions expressed in the unified modeling lan-

guage (UML)” (quote from Abstract). Here, a need is expressed for

rigorous application of design patterns to design models. In another

recent paper, Rost (2004) argues that a pattern must specify only those

parts of a generally applicable solution that are invariant across all

known instances of the problem described. Thus, the Factory Method

should not be considered a true pattern, since the principle described

there (delegation of object creation to some agency that possesses the

knowledge of the exact type required) is also present in other patterns,

such as Prototype.

However, the present work accepts the starting point that design pat-

terns are a vehicle for practitioners to communicate the principles of

proven solutions to recurring problems. It follows that “rigorous appli-

cation” has little meaning, since the specifics of each instance of a prob-

lem are going to be somewhat different from the last one—otherwise,

7

we should be able to reuse actual code, i.e., a much lower level of ab-

straction than a pattern.

Similarly, requiring a pattern to be distilled down to the invariant as-

pects of a solution and those only, over the total possible problem space,

would likely reduce its usefulness because of the concurrent loss of con-

text information; it is often by no means obvious that the same solution

can in principle be applied to seemingly different problems. Indeed,

the patterns Strategy and State in (Gamma et al., 1995, p. 305, 315) give

structurally identical solutions to different problems. At OOPSLA’98,

Agerbo and Cornils (1998), discussed this and also showed that there

is a difference in the two patterns caused by their different contexts.

Thus we have two valid applications of the same fundamental idea,

forcefully illustrating this point.

Design Patterns survive by being useful. There are many books de-

scribing patterns (an incomplete list includes Gamma et al., 1995; Berry

et al., 2002; Fowler, 2002; Alur et al., 2001; Borchers, 2001; Coplien and

Schmidt, 1995; Yacoub and Ammar, 2004), and there are a number of

conferences dedicated to patterns each year, coordinated by The Hill-

side Group (2004a): Pattern Languages of Programming (PLoP, USA),

ChilliPLoP (USA), EuroPLoP (Europe), KoalaPLoP (Australia), Sugar-

LoafPLoP (Brazil) and MensorePLoP (Japan). In addition, mainstream

conferences also have many papers or workshops related to design

patterns—OOPSLA (at least 17 related papers in 2004, 4 in 2003) and

ECOOP (6 papers in 2004).

The emphasis is on usefulness, and this is highlighted by the way pat-

terns are submitted to the PLoP conferences. Instead of a traditional

review process that ends in accept/reject decisions, a “shepherding”

process is followed (The Hillside Group, 2004b). In it, the reviewer

works with authors of promising pattern papers to refine them into a

form good enough for the conference workshop. At the conference, the

pattern is dissected and commented by a group of well-prepared peers.

This is done using a process known as a “Writer’s Workshop” (Schmidt,

2002), which places a heavy emphasis on involving the group and ac-

tually relegates the author to be a mute observer. The author can then

present the pattern in its final form elsewhere.

8

Design Patterns can be used to describe many aspects of the software

development process. Structural and behavioural patterns capture

the structure and dynamic behaviour of the software itself (Gamma

et al., 1995). Process patterns relate to the (human) process of creating

the software, and describe aspects such as common relations, tensions

and conflicts within design teams and how to tackle them (Ambler,

1998). Cognitive patterns deal with how the mind works and what

approaches one might use to get a better understanding of problems

and specifications (Gardner et al., 1998). There are also many patterns

specific to the various domains for which software is written. Exam-

ples include simulation (Ekström, 2000), telecom (Rising and Firesmith,

2001), real-time systems (Douglass, 2002), human-computer interaction

design (Borchers, 2001), and even dating (Haugland, 2003).

1.4 Goals, contribution and thesis organization

The primary goal of this research is to advance the understanding of

how the usage of design patterns influences software development

in practice. The choice of empirical—as opposed to theoretical or

formal—methods was natural in this context.

The software life cycle begins with an idea or problem that needs solv-

ing, and ends with a period of decreasing maintenance leading to ob-

solescence. The maintenance phase is often the longest of the cycle,

and arguably also one of the most expensive, at 40% to 70% of the to-

tal cost (see for example Lientz et al. (1978); Guimaraes (1983)). This

motivated the decision to study the impact of design patterns on this

phase, rather than on the initial specification, design and development

phases. Only structural and behavioural patterns have been studied,

i.e., patterns that specify how the program code should be structured

and how the various object behave.

Empirical research on the effects of design patterns in the scientific liter-

ature is fairly limited (see Section 3.4, p. 32 in this thesis). Many general

claims are made for design patterns, usually with anecdotal evidence

to back them up. For almost all patterns, the advantages of flexibility

9

and power are advocated, typically without much regard to the accom-

panying complexity that often occurs.

The research in the four papers that constitute this thesis advance the

field in the following ways:

1. A controlled experiment (Vokáč et al. (2004), p. 50 in this thesis)

showed great variability in the ease of learning and use of se-

lected patterns. The subjects were professional consultants, per-

forming maintenance work on four different programs. Of the

four patterns tested, one (Observer) was readily used and proved

advantageous even to subjects without training. It was even re-

invented by one subject during the experiment. Conversely, the

Visitor pattern had a significant negative effect on both the main-

tenance effort and the quality of the results, in spite of specific

training given during the experiment. This paper has been pub-

lished in Empirical Software Engineering (vol. 9, no. 3, 2004).

2. Evaluation of historical data from three years of maintenance of a

million-line commercial software product (Vokáč (2005b), p. 141)

also showed marked differences in error rates correlated with the

presence of design patterns. This gives us the possibility to make

predictions about future error rates based the use of patterns, and

can be used to better direct the design resources available to a

team. This paper has been accepted in IEEE Transactions on Soft-

ware Engineering.

3. A tool was made that can rapidly and reliably recognize a number

of design patterns in C++ code, at a rate of 3×106 lines of code

per hour. This is at least an order of magnitude faster than other,

similar tools and makes it possible to evaluate huge code bases

and historical data over long terms. A paper describing this tool

(Vokáč (2005a), p. 179) has been accepted for the Journal of Object

Technology, to appear in July/August 2005.

4. The usefulness of design patterns as documentation tools to sup-

port the reuse of reference application as a basis for a new de-

velopment project (Vokáč and Jensen (2004), p. 113) was stud-

ied in an industrial case. The reference application “PetStore”,

10

published by Sun Microsystems, Inc (2003) is extensively docu-

mented with design patterns. The documentation not only aided

reuse of the software, but also influenced the organization of the

development team. Developers were organized around patterns

rather than around layers or functions. This paper was presented

at the PROFES 2004 conference and appears in the Proceeedings.

5. The experiment (Vokáč et al., 2004) contributed to the advance-

ment of empirical methods performed by the Software Engineer-

ing group at Simula. It illustrated how to tackle the technical and

social logistics of getting together 50 participants from 15 differ-

ent companies for three days, with a complex support infrastruc-

ture.

The awareness of a connection between design patterns and error rates,

combined with the existence of a tool that can rapidly identify patterns

in large programs opens up an avenue for further research. While pro-

prietary source code can be hard to obtain for research use, develop-

ment companies may be interested in having evaluations performed as

part of their internal improvement process, and aggregated results can

be published in research journals. The Open Source movement is also

a natural provider of raw materials for further research in this field.

If it turns out that there really are consistent correlations between struc-

tures and behaviour specified by certain patterns and the frequency of

errors, an opportunity exists for building theories that explain these

correlations in terms of cognitive and technical factors.

At the same time, such results have an immediate industrial applicabil-

ity. Already, one project to modify some of the software used in the case

study has been completed, and it was in part motivated by the findings

of the study. A study is already planned for around the year 2006 to

evaluate the long-term effects of these changes, and of other patterns.

11

12

Chapter 2

Design Patterns

The term “pattern” has many definitions, several of which are relevant

to a study of software design patterns. The following relevant defini-

tions are taken from the Oxford English Dictionary, 2nd Edition:

1. a. ‘The original proposed to imitation; the archetype; that which

is to be copied; an exemplar’ (J.); an example or model deserv-

ing imitation; an example or model of a particular excellence.

2. a. Anything fashioned, shaped, or designed to serve as a model

from which something is to be made; a model, design, plan, or

outline.

6. An example, an instance; esp. a typical, model, or representa-

tive instance, a signal example.

7. A precedent, an instance appealed to. (Obsolete).

8c. fig. An arrangement or order of things or activity in abstract

senses; order or form discernible in things, actions, ideas, sit-

uations, etc. Freq. with of, as pattern of behaviour = be-

haviour pattern (see BEHAVIOUR 6), and as second element

with defining word.

All of these meanings are reflected in the modern usage of the term De-

sign Pattern in software. However, the term Design Pattern has existed

for some time in other contexts; those are the subject of the next section.

13

2.1 Historical background

The concept of a “Pattern” as a recipe for how certain tasks are to be

performed or designed dates back to the seventeenth century. It can

best be illustrated by citing a passage from Baer (2002):

While the emergence of sophisticated accounting and double-

entry bookkeeping techniques in the early modern era has been

credited with helping to promote economic development, the real

estate investment practices of seventeenth-century England, es-

pecially London, have not been as closely examined. Evidence

suggests that methods of assessing real estate also underwent sig-

nificant change.

The seventeenth century saw the emergence of “pattern books,”

which revealed rules of thumb and strategic methods of calcu-

lating appropriate yields and value. Although not as technically

perfected as double-entry bookkeeping at the time, these books

acted as a catalyst for economic development. The origins of pat-

tern books are obscure, but their introduction to the public in the

mid-seventeenth century, and their widespread dissemination to-

ward the end of the century, influenced the decisions of a variety

of investors who shaped London’s remarkable physical growth.

Figure 2.1: Facsimile of a manuscript from 1677, giving a Pattern for valu-

ation of real estate in London

14

Already, we see many of the hallmarks of the modern usage of patterns.

They specify rules of thumb and strategic (thus necessarily abstract)

methods. They are based on experience, what has already been found

to work. Last but not least, they are read and used by practitioners who

thereby gain knowledge and the ability to perform their work better.

The modern usage of Design Patterns is attributed to Christopher

Alexander (1977; 1979). He is an architect by profession, and his pat-

terns are architectural. The concept is that there are certain pairs of

problems and solutions that appear repeatedly, and that it is possible to

capture them in a way that makes this knowledge accessible. Moreover,

patters were seen as vehicles to capture the “quality without a name”,

that which makes some buildings enduringly beautiful and practical.

Figure 2.2: Two patterns from Alexander, one good and one bad.

Figure 2.2 shows two of Alexander’s patterns (from A Pattern Lan-

guage, 1977). The essence of the problem is that people are drawn to

the windows of a room, and we need to furnish it accordingly. In “A

window place”, the sitting group is placed next to the windows; people

will drift to the windows naturally, and then find a convenient place to

sit there.

“Holes in the wall” can be considered an antipattern—a bad way of

doing things. This room has a tension between the easy chairs in one

corner, and windows in the opposite corner. The desire to sit and the

desire to be close to the window are in tension, and people will not feel

quite comfortable in the room.

15

Alexander’s dream was that people, including non-architects, could

build better houses by learning a limited number of patterns and ap-

plying them wherever they saw fit. The resulting houses and city plans

would not be identical, as they would have been from a strict recipe.

They would still be individual, while embodying the accumulated wis-

dom of the specialist architects, like Alexander himself, who would for-

mulate the patterns.

Each pattern describes a problem which occurs over and over

again in our environment, and then describes the core of the solu-

tion to that problem, in such a way that you can use this solution

a million times over, without ever doing it the same way twice.

Each pattern is a three-part rule, which expresses a relation be-

tween a certain context, a problem, and a solution.

Alexander (1977)

As discussed by Gabriel (1998), Alexander’s vision turned out to be

very hard to realize, even in circumstances where most of the param-

eters of building were controlled by Alexander himself (Alexander,

1985). One of the main lessons learned was that a designer or builder

does not become an expert simply by having a set of excellent patterns

at one’s disposal. The same seems to be the case with design patterns

in software, and is one of the subjects of this thesis.

2.2 The evolution of software design patterns

The software industry has struggled with the size and complexity of

software more or less from the beginning. Despite enormous efforts,

large-scale reuse is still problematic. At the same time, it takes both

inborn talent and many years of training and experience to create really

good software developers.

Alexander’s ideas of boiling down specialist experience into a form

that was accessible to practitioners (Alexander, 1977, 1979; Alexander

et al., 1969), and would guide them without forcing them into a strait-

jacket appealed to several leading software figures. Ward Cunningham

and Kent Beck came up with five patterns for user interfaces as part of

16

a project in 1987, and published their results at a workshop at OOP-

SLA’87 (Beck, 1987). At workshops at OOPSLA’91 and ’92 (Anderson,

1992), most of the pioneers met and shared ideas.

The Hillside Group first met in 1993 and 1994, with the last meeting

dedicated to plan the first PLoP conference, which was held in Au-

gust 1994. The first edition of “Design Patterns: Elements of Reusable

Object-Oriented Software” (Gamma et al., 1995) was published in time

for OOPSLA’94 and broke Addison-Wesley’s previous record for sell-

ing technical books at conferences by a factor of 7 (750 copies sold).

In the following years, localized PLoP conferences sprang up in many

places—EuroPLoP in Europe, ChiliPLoP in Arizona, MensorePLoP in

Japan, KoalaPLoP in Australia, SugarLoafPLoP in Brazil and Viking-

PLoP in Scandinavia, roughly in order of appearence. Design Patterns

have become established tools among software architects, though not

so much a the “lower” practitioner levels.

2.2.1 Pattern forms

The presentation forms of patterns have evolved and branched in sev-

eral directions. The degree of formality differs between forms, and one

of the major online references for patterns (Anonymous, 2002) currently

lists nine forms as “well known”. Since this is a WikiWikiWeb editable

by any visitor, and the patterns community is very much alive, this is

not a static reference. To show the variety I include a short overview of

those forms.

Alexandrian Form This form is fairly close to the one used by Alexan-

der (1979). It contains the sections Title, Problem,

Discussion, Solution, a Diagram, as well as pro-

logues and epilogues that connect this pattern to

other relevant patterns.

Canonical Form Canonical form does not necessarily mean the orig-

inal form, it means the simplest, most basic or pri-

mordial form. It is more formal and complete than

the Alexandrian form, containing additional sec-

tions on Context, Forces, Resulting Context, Ratio-

17

nale and Known Uses. It is also known as “Coplien

Form” as Jim Coplien was one of the more promi-

nent pattern-writers to use it early.

GoF Form This form was used in the classic book by Gamma

et al. (1995), and uses different headings from the

Canonical Form. However, most of its sections can

be mapped to the canonical form, as follows:

GoF Canonical

Name Name

Alias Also Known As

Problem Intent

Context Applicability

Forces Motivation

Solution Participants, Structure,

Collaborations,

Implementation

Example Sample Code

Resulting Context Consequences

Rationale

Known Uses Known Uses

Related Patterns Related Patterns

Compact Form While many other forms try to structure and

present as much information as possible, the Com-

pact Form goes the other way and targets patterns

that can be expressed on a single page. It contains

the bare minimum: Context, Problem, Forces, Solu-

tion and Resulting Context.

Cockburn PM Form Alistair Cockburn used this form for his project

management patterns. It is more verbal and ori-

ented towards people and processes rather than

technical software problems. It has many head-

ings: Title, Thumbnail, Indications, Contraindica-

tions, Forces, Do this, Side Effects, Overdose Effect,

Related Patterns, Principles, Examples and Read-

ing.

18

Portland Form This form is best described by its creators: “Each

pattern in the Portland Form makes a statement

that goes something like: ‘such and so forces create

this or that problem, therefore, build a thing-a-ma-

jig to deal with them.’

The pattern takes its name from the thing-a-ma-

jig, the solution. Each pattern in the Portland

Form also places itself and the forces that create

it within the context of other forces, both stronger

and weaker, and the solutions they require.

A wise designer resolves the stronger forces first,

then goes on to address weaker ones. Patterns cap-

ture this ordering by citing stronger and weaker

patterns in opening and closing paragraphs. The

total paragraph structure ends up looking like:

• Having done so and so you now face this

problem. . .

• Here is why the problem exists and what

forces must be resolved. . .

Therefore:

• Make something along the following lines. I’ll

give you the help I can. . .

• Now you are ready to move on to one of the

following problems. . . ”

Beck Form Kent Beck made his own variant of the pattern

forms, using the headings Title, Context, Problem,

Forces, Solution and Resulting Context.

Fowler Form Martin Fowler used an even more minimal and

loose form than the Compact Form in two of his

books (Fowler, 2002), keeping only the general out-

line of Title, Summary and “the bad stuff you avoid

by doing this pattern, and how this pattern helps

you avoid the bad stuff”.

19

If we look at what is common to all these forms, we recognize the basic

structure from Alexander’s original. A Design Pattern is a tried and

tested solution to a recurring problem, so it should specify what the

problem is, outline the solution, and help the reader decide when and

how to use it by pointing out relevant contexts, intended effects and

side effects. There is no single way that is “right”, and different pattern

groups have evolved understandings of what they consider to be useful

forms.

2.3 Pattern languages

Many patterns are valuable on their own. However, there are many

patterns that combine to form a more coherent whole; in this case, we

can speak of a pattern language. The individual patterns correspond to

words, and the language gives rules (grammar) for how they may be

combined.

As with the translation of individual patterns into actual code or be-

haviour, the construction of “sentences” in a pattern language are left

as an exercise for the user: the software developer or project man-

ager. Only the practitioner can know which patterns are relevant at

any given point, and how they should actually be applied—a very im-

portant principle.

An excellent example of a pattern language is described in Scott W.

Ambler’s book “Process patterns” (Ambler, 1998). It gives a compre-

hensive set of patterns that can be used in the software development

process, with ten distinct, consecutive phases and multiple patterns for

each phase. By putting together a set of phases and patterns suitable

for each phase, a development team can build and document its own

process.

Each of the patterns is complete enough that it has value on its own.

However, a well-chosen set of patterns from the language will have

a greater value than have the same number of patterns from random,

unrelated sources. There may also be higher-level guidance in the lan-

guage, such as tips on order or decisions points: if you chose a certain

20

pattern at one point, a whole collection of other patterns may become

advantageous or irrelevant.

21

22

Chapter 3

Research methods in empirical software

engineering

This chapter summarizes the research methods of, and constraints on

empirical software engineering as a discipline.

3.1 Science versus industrial practice

Unlike fields like physics or mathematics, research on software engi-

neering studies the production of intellectual artefacts by humans. The

“reality” being studied at any point is the combination of current in-

dustrial practice and theoretical work in both industry and academia.

It is constantly changing and is to a certain extent dependent on local

cultures and habits.

There are several differences between software artefacts and other

human-built structures such as bridges or aircraft, but the main one

is that the software is primarily an intellectual product, relatively inde-

pendent of its actual physical storage or execution units. At the same

time, software, unlike abstract mathematics, is expected to interact with

the physical world in a manner yielding some predefined result. Since

software is primarily created for commercial or practical reasons, its

development is directed towards a concrete goal, constrained by time

and resources in a way that abstract mathematical research is not. This

is one of the criteria of “wicked problems”, listed in 1.2.

23

An aircraft is a structure whose construction is constrained by physical

laws such as gravitation, aerodynamics and the strength of materials.

It is also highly visible, and visibly complex. The serious consequences

of major flaws in the design are obvious and motivate a corresponding

attention to design and construction. Development of a new aircraft,

even one that is largely derived from an existing model, costs billions

of dollars.

Apart from its development effort, a software program is only con-

strained by the size and speed of the computers it runs on, and the

exponential development in these parameters is well-known and with-

out equivalence in the “physical” world. Software has therefore pro-

ceeded from a tractable level of complexity (1950’s) to a point where a

desktop operating system contains 107 lines of code, a size obviously

beyond being fully testable or predictable as a system. At the same

time, software is largely invisible, and its complexity remains hidden.

Consequently, the need for careful design suffers from the same lack of

visibility, and the money available for development is one or more or-

ders of magnitude lower than for correspondingly complex mechanical

devices.

Brooks (1987) highlighted all of these differences in his paper “No sil-

ver bullet”, and they have only become greater with the exponential in-

crease in computing power and complexity since then (roughly a factor

250 for typical CPU power, 500 for memory and 10 000 for disk space).

In the software industry, the choice of development methods and pro-

cesses is influenced by many factors. The personal preferences and

qualifications of the developers have a major impact on the process that

is actually followed, a process that is sometimes quite different from the

one specified by the organization. Other factors include perceived ben-

efits (that may be motivated more by politics than technology) from

adhering to a certain process, requirements by customers, and experi-

ence from other projects.

Software is a term that has a wide meaning. Viewed narrowly it

can simply represent the code that is actually running in a computer,

though usually in its high-level form and not compiled machine code.

24

However, it is also often used in a wider sense, encompassing formal

and semi-formal models, designs and other materials directly related

to the program code.

All of the above combine into a fairly chaotic reality, and makes soft-

ware engineering research more reminiscent of social studies than

physics. On the other hand, current computers are fundamentally de-

terministic machines, and the languages we use to program them have

fairly simple grammars, expressible in formal systems. Similarly, more

abstract design and specification languages exist (such as SDL) that can

be automatically translated to executable code, with designs that can

be mechanically verified to have certain properties. This corresponds

better to the world-view of the mathematical community, and scientific

methods based on rigorous derivation of theories from first principles.

There is, therefore a certain tension between the scientific and indus-

trial approaches to software engineering—between the wish to apply

methods and reasoning models from mathematics and the physical sci-

ences, and the presence of intractable and hidden complexity plus a

large number of human and social factors that are hard to characterize,

control or repeat.

Good opportunities for research do exist where there are enduring

needs, such as the need to go from informally specified requirements

via general solutions to specific, programmable designs. This transition

is one of the fundamental and difficult problems of software engineer-

ing. It is also quite unavoidable. Design patterns represent one way of

attacking this problem, and are of interest to both industrial practition-

ers and researchers.

3.2 Empirical research on software engineering

The empirical method is one of several different research models that

can be applied to software engineering or other fields. Quoting from

Adrion (1992),

Part of the problem with SE research methodology lies in how

25

one defines the boundaries of the field. While typical engineer-

ing research builds on principles from clearly defined scientific

disciplines—physics, chemistry, etc.—the boundary between SE

and its scientific bases in programming languages, data struc-

tures, algorithms, operating systems, etc. is much less clearly

defined. Many research “achievements” in SE could actually be

said to be advances in the underlying science base, rather than in

the engineering of software.

Thus, methodological problems arise, since one is, at times, at-

tempting to advance both the science underlying SE and the engi-

neering practice simultaneously. In addition, unlike many other

engineering disciplines, there is no clear boundary between engi-

neering and management issues in SE. To develop management

principles and refine engineering practice together can also lead

to methodological conflicts.

Four different models are cited by Adrion as applicable to software en-

gineering research:

1. The scientific method: observe the world; propose a model or

theory of behaviour, measure and analyze, validate hypotheses

of the model or theory; and if possible, repeat.

2. The engineering method: observe existing solutions, propose bet-

ter solutions, build or develop, measure and analyze, repeat until

no further improvements are possible.

3. The empirical method: propose a model, develop statistical or

other methods, apply to case studies, measure and analyze, vali-

date the model, repeat.

4. The analytical method: propose a formal theory or set of axioms,

develop a theory, derive results and if possible compare with em-

pirical observations.

These models can be characterized along two axes: a) The presence or

absence of a theoretical model; and b) whether observation of the world

takes place before or after the theoretical model is proposed. In prac-

tice, since software engineering is an activity that we are demonstrably

unable to characterize and deduce from a priori formal models, a mix

of the scientific, empirical and possibly engineering methods is a nat-

26

ural (maybe inevitable) choice. For sharply defined, limited areas the

analytical model may still be applicable, but not to software engineer-

ing in general.

3.3 Empirical research methods

The three most commonly used study methods in empirical research

are the Survey, the Case Study and the Experiment.

A survey is research in the large: it covers broad tendencies over a large

number of projects, methods or subjects. Depending on the openness

of the questions, it can be used as a theory-testing or theory-generating

study. However, demonstrating causality is difficult or impossible us-

ing surveys, and the validity of a survey is threatened both by sample

selection and question formulation.

Achieving truly random samples is usually very hard, as one cannot

generally force subjects (chosen through randomization) to respond.

Unless the response rate is carefully monitored and any systematic non-

responsiveness compensated for, the result will be skewed samples (for

instance, those subjects who were interested enough to respond!). This

can be ameliorated, for instance, by offering a reward for participa-

tion. However, this raises other problems, such as whether respondents

then feel compelled to give answers that (in their opinion) give the re-

searchers “value for money”. Due to the lack of close contact, it is not

possible to know in detail how the subjects interpret the questions, and

therefore what they are actually answering.

In a case study, the researcher wants to understand a particular situa-

tion or process in depth. The target project or organization is chosen

through a deliberate process, either because it is considered to be typ-

ical of a field, or because it illustrates one particular point (Yin, 2003).

The choice is affected by the kind of generalization that is intended.

In order to be able to claim external validity for a case study, it must

be possible to argue strongly that it is in all significant ways typical of

the intended target population (which must also be carefully specified).

On the other hand, a case study performed on an extreme project can be

27

used to illustrate a border or end point to the validity of an underlying

theory. The researcher may observe concurrently with the project, ret-

rospectively, or even be an active participant (Action Research). Case

studies generally try to disturb the target project as little as possible,

but some impact from data collection, interviews or measurements is

usually unavoidable.

Controlled experiments are particularly useful as theory-testing de-

vices. This implies that before an experiment can be designed and

performed, sufficient knowledge must already have been gathered to

formulate a theory. From the theory, hypotheses are derived, and then

subjected to test through the experiment (Christensen, 2001). Experi-

ments are used in all scientific disciplines, and fairly detailed guidelines

for their use in software engineering research exist (Kitchenham et al.,

2002). Since they are also one of the main ingredients of the present

research (and, indeed, of the research strategy of the Software Engi-

neering group at Simula Research Laboratory), they are considered in

more detail below.

3.3.1 Experiments in software engineering research

Formal experiments constitute a rigorous approach to testing hypothe-

ses and the theories from which they are derived. However, the validity

of an experiment still faces numerous threats (Sjøberg et al., 2002, 2003;

Kitchenham et al., 2002). The most usual threats in software engineer-

ing research are:

1. Population characterization. In order to generalize a result, the

population to which it applies (and from which we are selecting

our sample of subjects) must be clearly defined. This is difficult—

is the population the sum of all developers? Developers using a

particular language? Developers with a certain educational back-

ground, working on a particular type of software?

Since software engineering is an activity that is intensely depen-

dent on human factors, the number of potentially confounding

variables is large and the definition of a population correspond-

ingly difficult. Ultimately, the theory that we are trying to test

28

through the experiment should provide a framework for charac-

terizing an “interesting” population. Otherwise, a large degree of

arbitrariness and therefore uncertainty will remain.

2. Sample selection. Statistical theory states that inferences can only

be made about a population if the study subjects constitute a ran-

dom sample. Again, this is difficult to achieve.

Students have often been used as subjects, for pragmatic reasons.

They are inexpensive or free, and they generally do as they are

told, especially if the researcher is also their tutor and the one

who sets their grades. However, recent research (Arisholm and

Sjøberg, 2004) shows that students can give significantly different

results from professionals, under the same conditions, and that

the differences may not be as expected (i.e., the students may ac-

tually do better than the professionals, where one would usually

assume the opposite). Significant ethical concerns can also arise

in such situations.

When using professionals as subjects, it is necessary to provide

payment on an industrial scale. Otherwise, the developers (if

self-employed) or their employers will incur a monetary loss by

participating, and the chance of having a representative sample

is very low. This makes experiments with many subjects quite

expensive, relative to the traditional funding of software engi-

neering research. Still, the amounts of money involved are triv-

ial compared to the expense of any kind of industrial pilot plant,

clinical study in pharmacology or physics experiment, let alone

the development of a new car engine—arguably all fields with

impacts of the same order of magnitude as software develop-

ment.

3. Materials and tasks. In his famous paper “No silver bullet”,

Brooks (1987) argued that the essence of software lies in its com-

plexity, conformity, changeability and invisibility. If we accept

this, experiments must reproduce these significant aspects in or-

der to be valid.

Reproducing complexity is particularly difficult, since the use of

complex and large experimental materials drastically prolongs

29

the time it takes to prepare and execute the experiment. Long

execution times combined with large numbers of paid subjects

are outside the scope of most research budgets. However, there is

also little or no tradition of applying for grants to do such experi-

ments. Other research fields have been successful in establishing

the need for, and results from, rigorous experiments and there is

no fundamental reason why software engineering should not do

the same.

The task of properly preparing materials, such as code to be main-

tained, is very difficult if the code is to be large and complex, and

still have sharply defined qualities in the areas we wish to mea-

sure.

Usually, experiments last on the order of hours. In this re-

search (Vokáč et al., 2004), that was increased to three days. Later

experiments at Simula have successfully extended the duration

to several months.

The difficulties of designing and conducting controlled experiments

combined with their expense is probably the reason why there are rel-

atively few of them. An extensive survey of the main software engi-

neering journals and conferences (Sjøberg et al., 2004) found 113 pa-

pers on experiments out of a total of 5433 papers over the last ten

years, in nine journals and four conferences. The vast majority of

these concerned software life-cycle/engineering (48%), methods (32%)

and Project/product management (8%). Only 18% of the experiments

(N=21) used only professionals as subjects. Only 2.2% of the total sub-

jects were paid; more significantly, in 65% of all surveyed experiments

the rewards, if any, were not reported and we can therefore form no

opinion of whether the reward may have influenced the results. About

70% of the experiments were conducted on constructed (i.e, artificial)

materials, and about 65% of the experiments concerned inspections or

other tasks that do not modify the code.

A single experiment, however well designed and executed, does not

constitute an absolute result, universally applicable. Thus, replication

of experiments is considered essential in most disciplines. For instance,

the repeated surveys of smoking have together provided incontrovert-

30

ible evidence of the harmful effects, where single studies could be dis-

puted. However, replicated experiments in software engineering are

rare (20 out of 103 in Sjøberg et al. (2004)). Lindsay and Ehrenberg

(1993) advance some reasons why replication is seldom undertaken,

and present a theory of replication. Their field is the social sciences, but

the arguments are applicable to software engineering research as well.

Replication is often considered to have a lower prestige than original

experiments. The emphasis on originality can be seen everywhere, in-

cluding the definition of what constitutes good PhD research (!). This

may partly be due to the misunderstanding that replication is the same

as simple repetition.

An identical replication of an experiment is neither desirable nor pos-

sible in software engineering research1. One cannot make the same

people perform the exact same task twice under the exact same con-

ditions, with no leakage of experience, knowledge or weariness across

the experiments.

However, it is critical to understand how a replication differs from

its predecessors. Well-chosen differences contribute to the knowledge

in the field; ill-chosen or uncontrolled differences may invalidate the

replication and in effect turn it into a new experiment with results that

cannot be compared with the original experiment.

The experiment reported in Vokáč et al. (2004) is a replication, and illus-

trates how replication is different from mere repetition. We wished to

increase the realism of the experiment (Sjøberg et al., 2002), and did so

in two ways: 1) we used a real programming environment, instead of

annotations to paper printouts, and 2) our subjects came from multiple

consultancy companies and were paid for their participation, instead

of being volunteers from a single company. A more sophisticated sta-

tistical method was used to analyze the raw data.

However, we used the same general design of the experiment and the

exact same set of four tasks. The program code was identical to that

1. Identical replication may be possible in physics or chemistry, but then it is used to

characterize the precision of the measurements or experimental set-up, or to discover

variability in the underlying phenomenon, or missed factors.

31

of the original experiment, except for corrections of minor errors. The

same course on Design Patterns was taught by the same person (Walter

Tichy), using the same course materials.

Using the terminology of Lindsay and Ehrenberg (1993), this experi-

ment was a “close” replication with the differences optimized for in-

creasing the realism of the results. Still, some other differences were in-

evitable: German and Norwegian developers come from different cul-

tures, and the underlying programming languages and facilities have

evolved during the four years that separated the original and the repli-

cation.

Some of the observed discrepancies in the results are probably caused

by these differences. On the other hand, since the raw data from the

original experiment were available in full, the new analysis approach

could be applied to them, to eliminate discrepancies caused by differ-

ing statistical methods. It is thus both possible and useful to perform

replications.

At the Simula research Laboratory, the Software Engineering group has

a long-running series of experiments on the effects of delegated ver-

sus centralized control styles on maintainability (Arisholm and Sjøberg,

2004). Close to 200 subjects have participated in multiple replications,

the latest addition being the use of pair programming. This is a unique

set of materials that will together have much greater impact than any

one of the experimental runs by itself.

3.4 Empirical research on design patterns

Design patterns have been in use in software since around 1994, and

they have been widely publicized through books, seminars, confer-

ences and in educational curricula. However, the amount of solid em-

pirical research around design patterns is quite limited.

The central figures of the patterns community have in general tended

to avoid hyperbole; however, some fairly wide claims are still made:

OK, let’s get it out up front. Patterns are not, repeat not, a silver

32

bullet. They certainly won’t single-handedly solve the software

crisis! Patterns will not create expert designers out of novices and

suddenly, magically, make everyone in your organization a guru!

Linda Rising, Rising (1998)

It should help novices to act as if they were—or almost as if they

were—experts on modest-sized projects, without having to gain

many years of experience.

Frank Buschmann, Buschmann et al. (1996)

Certain tried-and-true solutions to design problems can be

(and have been) expressed as a set of principles, heuristics or

patterns—named problem-solution formulas that codify exem-

plary design principles. This book, by teaching patterns, sup-

ports quick learning and skillful use of these fundamental object-

oriented design idioms.

Craig Larman, Larman (2001)

Most of the documentation of design patterns is in the form of books or

articles, written for the general developer audience. Backing for claims

is given in anecdotal form, with stories from the author’s own experi-

ence.

The focus of the present research is on experimental investigation of

how use of design patterns affects the maintainability of software. In-

creased maintainability, through both lower error rates and increased

flexibility and adaptability to new circumstances, is one of the per-

ceived advantages of design patterns.

Academic research on this aspect is limited. Prechelt and Unger (1999)

set out a program of research into patterns, and performed several ex-

periments (Prechelt et al., 2001, 2002). Bieman et al. (2001, 2003) have

performed several industrial case studies. Further case studies have

been conducted by several groups (Schmidt and Stephenson, 1995;

Neumann and Zdun, 2002; Chu et al., 2000). The subjects of the stud-

ies are industrial systems of up to 30 000 LOC, but they address re-

engineering or construction concerns, not maintenance over extended

periods.

The conclusions from these studies are that pattern use per se cannot

33

be said to be exclusively beneficial, nor will even the qualified use of

patterns guarantee below-average error rates or maintenance effort. Of

course, it is hard to know what would have happened if patterns had

been used differently or not at all in the studied cases; the replicated

experiment in this thesis (Vokáč et al., 2004) tested patterns against

“equivalent” designs to illuminate this.

Other research on design patterns has focused on tools to support

the use of patterns in the development process—either during de-

sign/coding, or reverse engineering. Reverse engineering tools have

been created by several groups (Kramer and Prechelt, 1996; Florijn

et al., 1997; Bansiya, 1998; Antoniol et al., 1998, 2001; Keller et al., 1999;

Schauer and Keller, 1998; Albin-Amiot et al., 2001; Guéhéneuc and

Albin-Amiot, 2001; Balanyi and Ferenc, 2003). Most existing tools have

been tested on code sizes up to 10 000 LOC, and usually less (or not

specified). Running times are usually not specified, so that it is hard to

extrapolate.

Commercial software often runs into millions of lines of code, and it is

arguably when the code is largest that the need for reverse engineer-

ing tools is greatest. This was one of the motivations for the research

reported in Vokáč (2005a,b), where large-scale reverse engineering was

needed to obtain the raw data for an evaluation of the effects of design

pattern usage on error rates.

3.5 Summary of research papers and methods

The four papers in thesis cover several different methods.

In order to obtain detailed information on the effects of certain selected

patterns, an experiment was performed (Vokáč et al. (2004), p. 50). To

increase the validity and value of the experiment, it was a replication

of an earlier experiment. Several changes were made relative to the

original, the most important being the use of paid professionals, and a

real, well instrumented programming environment.

The possible effects of using design patterns on the development pro-

34

cess itself were investigated through a case study (Vokáč and Jensen

(2004), p. 113); using a traditional experiment here would have required

very large resources in order to run the project several times “with” and

“without” design patterns being involved.

A second case study was conducted to investigate the effects of de-

sign patterns on a large, commercial software product (Vokáč (2005b),

p. 141). The knowledge gained here partly confirmed that from the

experiment, but some differences were uncovered as well—mainly the

increased error rate associated with the Observer pattern, which con-

tradicts the results from the experiment. However, one of the defin-

ing differences between the experiment and the case study as research

methods is that the case study allows much larger artefacts to be

investigated—and the problems with Observer were related to the size

and complexity of the classes involved. The benefits of using more than

one approach to research are well illustrated by this juxtaposition.

Finally, in order to perform the second case study efficiently (or indeed

at all), a method to extract design patterns from C++ code was needed.

This led to the development of a new tool, which was validated as part

of the study (Vokáč (2005a), p. 179).

To conclude, using several different and complementary research meth-

ods, the research reported here advances both the understanding of the

effects of design patterns, proposes that the usage of patterns in code

can be used to predict error rates, and advances the state of the art of

both pattern-recovering tools and software engineering experiments.

35

36

Bibliography for Introduction and summary

Adrion, W. R., 1992. Research Methodology in Software Engineering. In:

Tichy, W. F., Habermann, N., Prechelt, L. (Eds.), Dagstuhl Workshop

on Future Directions in Software Engineering. ACM SIGSOFT, Schloss

Dagstuhl, pp. 36–37.

Agerbo, E., Cornils, A., 1998. How to Preserve the Benefits of Design Pat-

terns. In: OOPSLA ’98: Conference on Object Oriented Programming

Systems Languages and Applications. Vol. 33 of SIGPLAN Notices. ACM

Press, Vancouver, British Columbia, Canada, pp. 134–143.

Albin-Amiot, H., Cointe, P., Guéhéneuc, Y. G., Jussien, N., 2001. Instantiat-

ing and Detecting Design Patterns: Putting Bits and Pieces Together. In:

ASE 2001: 16th Annual International Conference on Automated Software

Engineering. IEEE CS Press, San Diego, CA, USA, pp. 26–29.

Alexander, C., 1977. A Pattern Language: Towns, Buildings, Construction.

Center for Environmental Structure. Oxford University Press, New York,

ISBN: 0195019199.

Alexander, C., 1979. The Timeless Way of Building. Center for Environmental

Structure. Oxford University Press, New York, ISBN: 0195024028.

Alexander, C., 1985. The Production of Houses. Oxford University Press,

New York, ISBN: 0195032233.

Alexander, C., Hirshen, S., Ishikawa, S., Coffin, C., Angel, S., 1969. Houses

Generated by Patterns. Center for Environmental Studies, Berkely.

Alur, D., Crupi, J., Malks, D., 2001. Core J2EE Patterns. Prentice-Hall, Upper

Saddle River, NJ, USA, ISBN: 0130648841.

Ambler, S. W., 1998. Process Patterns. The Press Syndicate of the University

of Cambridge, Cambridge, United Kingdom, ISBN: 0521645689.

Anderson, B., 1992. Towards An Architecture Handbook. In: OOPSLA ’92:

Conference on Object Oriented Programming Systems Languages and

Applications. Vol. 27 of SIGPLAN Notices, Issue 10. ACM Press, Vancou-

ver, British Columbia, Canada, pp. 109–113.

Anonymous, 2002. Pattern Forms. URL http://c2.com/cgi/

wiki?PatternForms

Antoniol, G., Casazza, G., Di Penta, M., Fiutem, R., 2001. Object-Oriented

Design Patterns Recovery. Journal of Systems and Software 59 (2), 181–

196.

Antoniol, G., Fiutem, R., Cristoforetti, L., 1998. Using Metrics to Identify

37

Design Patterns in Object-Oriented Software. In: Metrics 1998: Fifth In-

ternational Software Metrics Symposium, 1998. IEEE Computer Society,

Bethesda, Maryland, USA, pp. 23–34.

Arisholm, E., Sjøberg, D., 2004. Evaluating the Effect of a Delegated Ver-

sus Centralized Control Style on the Maintainability of Object-Oriented

Software. IEEE Transactions on Software Engineering 30 (8), 521–534.

Baer, W. C., 2002. The Institution of Residential Investment in Seventeenth-

Century London. Business History Review 76 (Autumn 2002), 515–552.

Balanyi, Z., Ferenc, R., 2003. Mining Design Patterns from C++ Source Code.

In: ICSM’03: International Conference on Software Maintenance. IEEE

Computer Society, Amsterdam, The Netherlands, pp. 305–315.

Bansiya, J., June 1998 1998. Automating Design-Pattern Identification. Dr.

Dobb’s Journal 23 (6), 20–2, 24, 26, 28.

Beck, K., 1987. Using a Pattern Language for Programming. In: Kerth, N. L.,

Hogg, J., Stein, L., Porter, H. H. (Eds.), OOPSLA’87: Addendum to the

Proceedings. ACM Press, Orlando, Florida, USA, p. 16.

Beck, K., 1999. Extreme Programming Explained: Embrace Change. Addison

Wesley, Boston, MA, USA, ISBN: 0201616416.

Beck, K., Beedle, M., Bennekum, A. v., Cockburn, A., Cunningham, W.,

Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Mar-

ick, B., Martin, R. C., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D.,

2001. Agile Manifesto. URL http://www.agilemanifesto.org/

Berry, C., Carnell, J., Juric, M., Kunnumpurath, M., Nashi, N., Romanosky, S.,

2002. J2EE Design Patterns Applied. Wrox Press Ltd, Hoboken, NJ, USA,

ISBN: 1861005288.

Bieman, J., Jain, D., Yang, H., 2001. OO Design Patterns, Design Structure,

and Program Changes: An Industrial Case Study. In: ICSM 2001: IEEE

International Conference on Software Maintenance, 2001. IEEE Computer

Society, Firenze, Italy, pp. 580–589.

Bieman, J., Straw, G., Wang, H., Munger, P., Alexander, R., 2003. Design Pat-

terns and Change Proneness: An Examination of Five Evolving Systems.

In: METRICS ’03: Ninth International Software Metrics Symposium,

2003. IEEE Computer Society, Sydney, Australia, pp. 40–49.

Black, E., 2002. IBM and the Holocaust. Time Warner Paperback, ISBN:

0751531995.

Boehm, B., 1986. A Spiral Model of Software Development and Enhance-

ment. ACM SIGSOFT Software Engineering Notes 11 (4), 14–24.

38

Booch, G., 1993. Object-Oriented Analysis and Design, 2nd Edition. Pearson

Education, Upper Saddle River, NJ, USA, ISBN: 0805353402.

Borchers, J., 2001. A Pattern Approach to Interaction Design. John Wiley &

Sons, Hoboken, NJ, USA, ISBN: 0471498289.

Brooks, F. P. J., 1987. No Silver Bullet: Essence and Accidents of Software

Engineering. IEEE Computer 20 (4), 10–19.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., 1996.

Pattern-Oriented Software Architecture. Wiley, Chichester, ISBN: 0 471

95869 7.

Christensen, L. B., 2001. Experimental Methodology, 8th Edition. Allyn &

Bacon, Boston, MA, USA, ISBN: 0-205-30832-5.

Chu, W. C., Lu, C. W., Shiu, C. P., He, X. D., 2000. Pattern-Based Software

Reengineering: A Case Study. Journal of Software Maintenance—Research

and Practice 12 (2), 121–141.

Coplien, J., Schmidt, D., 1995. Pattern Languages of Program Design. Addi-

son Wesley, Boston, MA, USA, ISBN: 0201607344.

DeGrace, P., Stahl, L. H., 1991. Wicked Problems, Righteous Solutions.

Prentice-Hall, Inc., Englewood Cliffs, NJ, USA, ISBN: 013590126X.

Douglass, B. P., 2002. Real-Time Design Patterns: Robust Scalable Archi-

tecture for Real-Time Systems. Addison-Wesley, Boston, MA, USA, ISBN:

0201699567.

Ekström, U., 2000. Design Patterns for Simulations in Erlang/OTP. Master’s

thesis, Uppsala University, Sweden.

Feynman, R., 1997. Surely You’re Joking, Mr Fenyman. W. W. Norton & Com-

pany, New York, USA, ISBN: 0393316041.

Florijn, G., Meijers, M., van Winsen, P., 1997. Tool Support for Object-

Oriented Patterns. In: ECOOP ’97: European Conference on Object-

Oriented Programming. Vol. 1241 of Lecture Notes in Computer Science.

Springer-Verlag Heidelberg, Heidelberg, pp. 472–495.

Fowler, M., 2002. Patterns of Enterprise Application Architecture. Addison

Wesley Professional, Boston, MA, USA, ISBN: 0321127420.

France, R., Kim, D.-K., Ghosh, S., Song, E., 2004. A UML-Based Pattern Speci-

fication Technique. IEEE Transactions on Software Engineering 30 (3), 193–

206.

Gabriel, R., 1998. The Failure of Pattern Languages. In: Rising, L. (Ed.), The

Patterns Handbook. Cambridge University Press, Melbourne, Australia,

39

pp. 333–343, ISBN: 0-521-64818-1.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns: El-

ements of Reusable Object-Oriented Software. Addison-Wesley, Boston,

MA, USA, ISBN: 0201633612.

Gardner, K. M., Rush, A., Crist, M. K., Konitzer, R., Teegarden, B., 1998. Cog-

nitive Patterns. Cambridge University Press, Cambridge, United Kingdom,

ISBN: 0-521-64998-6.

Gilb, T., 1985. Evolutionary Delivery Versus the ”Waterfall Model”. ACM

SIGSOFT Software Engineering Notes 10 (3), 49–61.

Guéhéneuc, Y.-G., Albin-Amiot, H., 2001. Using Design Patterns and Con-

straints to Automate the Detection and Correction of Inter-Class Design

Defects. In: TOOLS 39: 39th International Conference and Exhibition on

Technology of Object-Oriented Languages and Systems, 2001. Santa Bar-

bara, CA, USA, pp. 296–305.

Guimaraes, T., 1983. Managing Application Program Maintenance Expendi-

tures. Communications of the ACM 26 (10), 739–746.

Haugland, S., 2003. Dating Design Patterns. Published by Solveig Haugland,

ISBN: 0974312002.

Jacobson, I., Booch, G., Rumbaugh, J., 1999. The Unified Software Devel-

opment Process. Addison-Wesley Professional, Boston, MA, USA, ISBN:

0201571692.

Keller, R., Schauer, R., Robitaille, S., Pagé, P., 1999. Pattern-Based Reverse-

Engineering of Design Components. In: ICSE ’99: 1999 International

Conference on Software Engineering. ACM Press, Los Angeles, CA, USA,

pp. 226–235.

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C.,

El-Emam, K., Rosenberg, J., 2002. Preliminary Guidelines for Empirical

Research in Software Engineering. IEEE Transactions on Software Engi-

neering 28 (8), 721–734.

Kramer, C., Prechelt, L., 1996. Design Recovery by Automated Search for

Structural Design Patterns in Object-Oriented Software. In: Third Work-

ing Conference on Reverse Engineering, 1996. IEEE Computer Society,

Monterey, CA, USA, pp. 208–215.

Larman, C., 2001. Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design and the Unified Process, 2nd Edition. Pren-

tice Hall, Upper Saddle river, NJ, USA, ISBN: 0130925691.

Lientz, B. P., Swanson, E. B., Tompkins, G. E., 1978. Characteristics of Applica-

40

tion Software Maintenance. Communications of the ACM 21 (6), 466–471.

Lindsay, R., Ehrenberg, A., 1993. The Design of Replicated Studies. The

American Statistician 47 (3), 217–228.

Neumann, G., Zdun, U., 2002. Pattern-Based Design and Implementation of

An XML and RDF Parser and Interpreter: A Case Study. In: ECOOP ’02:

16th European Conference on Object-Oriented Programming. Vol. 2374 of

Lecture Notes in Computer Science. Springer-Verlag Heidelberg, University

of Mlaga, Spain, pp. 392–414.

Object Management Group, 2004. UML 2.0 Specifications. URL http://www.

omg.org/technology/documents/modeling spec catalog.htm#UML

Peters, L. J., Tripp, L. L., 1976. Is Software Design Wicked? Datamation 22 (5),

127–.

Prechelt, L., Unger, B., 1999. Methodik und Ergebnisse einer Experimen-

treihe über Entwurfsmuster. Informatik - Forschung und Entwicklung

14 (2), 74–82.

Prechelt, L., Unger, B., Tichy, W. F., Brössler, P., Votta., L. G., 2001. A Controlled

Experiment in Maintenance Comparing Design Patterns to Simpler Solu-

tions. IEEE Transactions on Software Engineering 27 (12), 1134–1144.

Prechelt, L., Unger-Lamprecht, B., Philippsen, M., Tichy, W. F., 2002. Two Con-

trolled Experiments Assessing the Usefulness of Design Pattern Docu-

mentation in Program Maintenance. IEEE Transactions on Software Engi-

neering 28 (6), 595–606.

Rising, L., 1998. The Patterns Handbook. Cambridge University Press, Cam-

bridge, United Kingdom, ISBN: 0521648181.

Rising, L., Firesmith, D. G., 2001. Design Patterns in Telecommunica-

tions Software. Cambridge University Press, Cambridge, United Kingdom,

ISBN: 0521790409.

Rittel, H. W. J., Webber, M. M., 1973. Dilemmas in a General Theory of Plan-

ning. Policy Sciences 4 (2), 155–169.

Rost, J., 2004. Is ”Factory Method” Really a Pattern? ACM SIGSOFT Software

Engineering Notes 29 (5), 1–1.

Schauer, R., Keller, R., 1998. Pattern Visualization for Software Comprehen-

sion. In: IWPC ’98: 6th International Workshop on Program Comprehen-

sion, 1998. pp. 4–12.

Schmidt, D., 2002. How to Hold a Writer’s Workshop. URL http://www.cs.

wustl.edu/ schmidt/writersworkshop.html

41

Schmidt, D., Stephenson, P., 1995. Experience Using Design Patterns to

Evolve Communication Software Across Diverse OS Platforms. In:

ECOOP ’95: European Conference on Object-Oriented Programming.

Vol. 952 of Lecture Notes in Computer Science. Springer-Verlag Heidelberg,

Århus, Denmark, pp. 399–423.

Sjøberg, D., Anda, B., Arisholm, E., Dybå, T., Jørgensen, M., Karahasanovic,

A., Koren, E., Vokáč, M., 2002. Conducting Realistic Experiments in Soft-

ware Engineering. In: ISESE 2002: First International Symposium on Em-

pirical Software Engineering. IEEE Computer Society, Nara, Japan, pp. 17–

26.

Sjøberg, D., Anda, B., Arisholm, E., Dybå, T., Jørgensen, M., Karahasanovic,

A., Vokáč, M., 2003. Challenges and Recommendations When Increasing

the Realism of Controlled Software Engineering Experiments. In: Con-

radi, R., Wang, A. I. (Eds.), ESERNET 2001-2002. Vol. 2765 of Lecture Notes

in Computer Science. Springer-Verlag Heidelberg, pp. 24–38.

Sjøberg, D. I. K., Kampenes, V. B., Hannay, J. E., Hansen, O., Karahasanovic,

A., Liborg, N.-K., Rekdal, A. C., 2004. A Survey of Controlled Experiments

in Software Engineering. Submitted to IEEE Transactions on Software En-

gineering.

Sun Microsystems, Inc, 2003. Java Pet Store Demo 1.1.2. URL http://java.

sun.com/blueprints/code/jps11/docs/index.html

The Hillside Group, 2004a. Design Patterns Conferences. URL http://

hillside.net/conferences/

The Hillside Group, 2004b. Shepherding. URL http://hillside.net/

shepherding.html

Vokáč, M., 2005a. A Tool for Recovering Design Patterns from C++ Code,

and its Application in a Case Study. Journal of Object Technology, To ap-

pear July/August 2005.

Vokáč, M., 2005b. Defect Frequency and Design Patterns: An Empirical

Study of Industrial Code. IEEE Transactions on Software Engineering Ac-

cepted for publication.

Vokáč, M., Jensen, O., 2004. Using a Reference Application with Design Pat-

terns to Produce Industrial Software. In: Bomarius, F., Iida, H. (Eds.),

Product Focused Software Process Improvement. Vol. 3009 of Lecture

Notes in Computer Science. Springer-Verlag Heidelberg, Kansai Science

City, Japan, pp. 333–347.

Vokáč, M., Tichy, W., Sjøberg, D. I. K., Arisholm, E., Aldrin, M., 2004. A

Controlled Experiment Comparing the Maintainability of Programs De-

42

signed with and Without Design Patterns: A Replication in a Real Pro-

gramming Environment. Empirical Software Engineering 9 (3), 149–195.

Whitcomb, M., Clark, B., 1989. Pragmatic Definition of An Object-Oriented

Development Process for Ada. In: Tri-Ada ’89: Ada Technology in Con-

text: Application, Development, and Deployment. ACM Press, Pitts-

burgh, Pennsylvania, United States, pp. 380–399.

Williams, R. D., 1975. Managing the Development of Reliable Software. In:

International Conference on Reliable Software. ACM Press, Los Angeles,

California, pp. 3–8.

Yacoub, S. M., Ammar, H. H., 2004. Pattern Oriented Analysis and Design

(POAD): Composing Patterns to Design Software Systems. Addison Wes-

ley, Boston, MA, USA, ISBN: 0201776405.

Yin, R., 2003. Case Study Research, Design and Methods, 3rd Edition. Sage

Publications, Thousand Oaks, CA, USA, ISBN: 0-7619-2552-X.

Yourdon, E., 1976. How to Manage Structured Programming. Prentice Hall

PTR, Indianapolis, Indiana, USA, ISBN: 0917072022.

43

44

PART II

PEER-REVIEWED PAPERS

Paper 1

A controlled experiment comparing the

maintainability of programs designed with and

without design Patterns—a replication in a real

programming environment

This paper appeared in Empirical Software Engineering, vol. 9, issue 3,

pp. 149–195, 2004. 1

1. The text of all papers has been reformatted to fit in this thesis. The varying styles

of bibliographical references practiced by the different journals have forced some sen-

tences to be rewritten to make sense with the citation style used in the thesis. Sections

have also been renumbered to fit into the overall table of contents. The format changes

have also caused some tables and figures to move slightly. Otherwise, the text is iden-

tical to the published version.

All papers have either been published or accepted; there are no outstanding revisions.

47

48

A controlled experiment comparing the maintainability of pro-

grams designed with and without Design Patterns—a replica-

tion in a real programming environment

Marek Vokáč

Simula Research Laboratory

Walter Tichy

Universität Karlsruhe

Dag I. K. Sjøberg

Simula Research Laboratory

Erik Arisholm

Simula Research Laboratory

Magne Aldrin

Norwegian Computing Center

Abstract

Software “Design Patterns” seek to package proven solutions to design prob-

lems in a form that makes it possible to find, adapt and reuse them. To sup-

port the industrial use of Design Patterns, this research investigates when, and

how, using patterns is beneficial, and whether some patterns are more difficult

to use than others. This paper describes a replication of an earlier controlled

experiment on Design Patterns in maintenance, with major extensions. Ex-

perimental realism was increased by using a real programming environment

instead of pen and paper, and paid professionals from multiple major consul-

tancy companies as subjects.

Measurements of elapsed time and correctness were analyzed using regres-

sion models and an estimation method that took into account the correlations

present in the raw data. Together with on-line logging of the subjects’ work,

this made possible a better qualitative understanding of the results.

The results indicate quite strongly that some patterns are much easier to un-

derstand and use than others. In particular, the VISITOR pattern caused much

49

confusion. Conversely, the patterns OBSERVER and, to a certain extent, DEC-

ORATOR were grasped and used intuitively, even by subjects with little or no

knowledge of patterns.

The implication is that Design Patterns are not universally good or bad, but

must be used in a way that matches the problem and the people. When ap-

proaching a program with documented Design Patterns, even basic training

can improve both the speed and quality of maintenance activities.

Key words: Controlled experiment, design patterns, real programming

environment, qualitative results

1.1 Introduction

Design Patterns have become quite popular (Gamma et al., 1995;

Buschmann et al., 1996). In addition to making design knowledge avail-

able to both junior and more experienced developers, it is claimed that

Design Patterns define a common terminology that can be used to doc-

ument the design. According to the classic books by (Alexander, 1978,

1987), individual patterns can be combined into a language that guides

the designer. This should simplify communication of the underlying

design and assumptions from the original designers to maintainers of

the software.

An expected benefit—because Design Patterns tend to provide solu-

tions that are more complete than just solving the immediate problem

at hand—is the ability to add functionality at a later time without caus-

ing major changes. The same property may, however, introduce un-

needed complexity.

Prechelt et al. performed a controlled experiment in late 1997 (Prechelt

et al., 2001) to measure the effects of using several Design Patterns in a

maintenance situation. They used 29 unpaid professionals from a sin-

gle company as subjects, and used pen and paper for the programming

exercises. Based on the properties of the four selected patterns, they

hypothesised both positive and negative effects from the patterns.

Their results generally agreed with expectations. The use of the OB-

SERVER pattern in a simple program had the expected negative ef-

50

fect on maintainability; the VISITOR pattern was neutral in a context

where a negative effect was expected. The DECORATOR pattern had

the expected positive effect, and ABSTFACTORY caused only small dif-

ferences.

The authors of the present paper replicated their experiment with 44

paid, professional subjects using the same programs in a real program-

ming environment, instead of pen and paper. This increases the exper-

imental realism and, thereby, the applicability of the results.

The technical environment also allowed us to collect more data, mak-

ing more detailed analysis and inferences possible. It also allowed us

to address some of the threats to validity of the original experiment,

such as effects of subjects’ C++ knowledge, and of actually program-

ming and testing the solutions. At the same time, performing a close

replication allowed us to do a direct comparison of our results to those

of the original experiment.

Our results reinforce the conclusion that each Design Pattern has its

own nature and proper place of use; they cannot be classified as “good”

or “bad” in general terms. We found a positive effect for OBSERVER

and a very strong negative effect for VISITOR, while DECORATOR and

ABSTFACTORY found effects similar to those of the original experiment.

The remainder of this paper is organised as follows: Section 1.2 de-

scribes the original experiment. The present replication is described in

Section 1.3. Section 1.4 contains the programs, work tasks, hypotheses

and a summary of the quantitative results. Section 1.5 discusses the

results and qualitative factors that underlie the quantitative measure-

ments. Section 1.6 compares this replication to the original experiment.

Section 1.7 addresses methods, and Section 1.8 the validity and appli-

cability of the experiment. Section 1.9 concludes.

1.2 The original experiment

This Section gives an overview of the design of the original experiment.

51

1.2.1 Objectives and hypotheses

“If you have a hammer, everything looks like a nail”. Thus, having

learned some Design Patterns, it may be tempting for a designer to use

them even in situations where their complexity and application may

not be warranted, and a simpler solution is available.

Prechelt et al. wished to test whether the use of some specific patterns

in such situations is “helpful”, “harmful” or “neutral” for subjects with

different backgrounds. They informally framed their hypotheses as ex-

pectations: A design pattern P does, or does not, improve the perfor-

mance of subjects doing maintenance work task X on program A (con-

taining P) when compared with subjects doing the same work task X

on an alternative program A′ (not containing P).

Note that the programs may contain patterns other than the one be-

ing tested; these other patterns are used identically in the A and A′

versions. Henceforth, we will use the term PAT for the version with

patterns, and ALT for the version without.

The “helpful”, “harmful” and “neutral” interpretations are derived

from the support or contradiction of these hypotheses.

1.2.2 Variables

The experiment used three independent variables:

• Program and Work Task: there were four different programs,

each with its own purpose, patterns, and two maintenance work

tasks.

• Program Version: each program existed in two versions, func-

tionally equivalent, comparably complex and sharing some code.

The PAT version contained one pattern not present in the ALT

version; the alternate version used a “simpler” structure to re-

place the pattern. This was the central variable of the experiment.

Equivalent documentation was present in the two versions, such

as an inheritance outline vs. pattern name and class role.

• Amount of Design Pattern Knowledge: the experiment was di-

vided into three parts. In the first half of day one, the subjects per-

52

formed the pre-test, consisting of work tasks on two programs.

The rest of day one and the first half of day two contained a pat-

terns course, and the rest of day two was used for the remaining

two tasks (post-test).

Before the experiment, most subjects had little or no experience

with patterns; thus, the post-test represented subjects with sig-

nificantly more knowledge of Design Patterns than the pre-test.

The experimental design is summarized in Figure 1.1. In order

to control learning and fatigue effects, the order of programs is

varied, and data is collected from each subject on both PAT and

ALT programs.

The experiment used two dependent variables:

• Time: the time taken to complete each task, in minutes.

• Correctness: each solution was evaluated on a five-point scale

to assess to what degree it was functionally correct, regardless

of whether it used the “proper” design. We use the term “cor-

rectness” instead of the more general “quality”, as overall quality

is complex and difficult to measure. However, “correctness” is

more simply defined:

1. Requirements misunderstood —the solution did not address

the given task, or was totally useless, or no real solution was

made or attempted.

2. Wrong answer—the requirements were understood, but the

attempted solution did not work and was not on the right

track.

3. Right idea—the requirements were understood and a rea-

sonable solution attempt was made, but the solution either

did not work or did not compile.

4. Almost correct—the solution compiled and ran but did not

give exactly the correct answer; however, it did not contain

any fundamental errors.

5. Correct—the solution compiled, ran and produced correct

output.

53

GR

ST

CO

BO

CO

BO

GR

ST

Course

A

B

C

D

Familiarisation Pat version Alt version

ST

GR

BO

CO

ST

GR

BO

CO

F

F

F

F

F

G
ro
u
p

Pre-test Post-testCourse
Time

Figure 1.1: Experimental Design: Circles denote PAT program versions,

shaded diamonds ALT versions. The two-letter codes are the program

name abbreviations. Time runs from left to right; the first day includes

the pre-test and the first half of the course, the second day contains the

second half of the course and the post-test.

1.2.3 Summary of programs and work tasks

The four C++ programs used came from different domains and were of

varying complexity. This was intended to guard against the possibility

of domain knowledge or complexity systematically biasing the results;

a fuller discussion can be found in Threats to Validity, Section 1.8.

This experiment looked at the effects of Design Patterns through the

medium of code (with some documentation), not models. In a main-

tenance situation, there may not be any valid models available; also,

having to actually implement changes in code provides a stricter test of

understanding of the original code and its design. Fundamentally, the

end result that matters from a development or maintenance project is

the final code and not the underlying model.

Throughout this paper, the programs are identified by their names or

abbreviations. The names reflect the domain of the programs: Stock

Ticker (ST), Graphics Library (GR), Boolean Formulas (BO) and Com-

54

munication Library (CO). For each program, there were two work

tasks. With one exception, the first task was a programming task (ad-

dition of a feature), and the second task was oriented more towards

theoretical comprehension.

Each program tested a different pattern. While it would be possible to

create a program that contained all the patterns, it was considered eas-

ier to make the programs separately, so that each tested the aspects of a

single pattern. The correspondence between the PAT and ALT versions

of the programs was also considered simpler to maintain in separate

programs. Most importantly, combining multiple patterns in a single

program would have given the subjects a chance to see all of the pat-

terns and code immediately, thereby introducing a learning effect and

seriously compromising the experimental design.

In all cases, the features to be added to the programs corresponded to

features already present in the code, which could be used as templates

by the subjects. Table 1.1 contains short, comparable descriptions of all

programs and tasks, while detailed descriptions can be found in Sec-

tion 1.5.

1.2.4 Subjects, programs, tasks and groups

A total of 29 subjects participated in the original experiment. They were

all professional software engineers and came from a single company.

Fifteen subjects had some experience with Design Patterns.

The subjects were divided into four groups (A-D). Each group main-

tained one PAT and one ALT version of a program in both the pre-test

and post-test. Each subject worked on all four programs and each pro-

gram was used as often in the pre-test as in the post-test, and as often

in PAT and ALT versions, as shown in Figure 1.1.

1.2.5 Analysis and statistical methods

The time and correctness data was first evaluated using an analysis of

variance to identify significant factors. As expected, the work task was

the most significant factor, while the order of tasks was not significant.

55

Table 1.1: Descriptions of programs and tasks

Program Description and Complexity Tasks Patterns

Stock

Ticker (ST)

Display an incoming stream of

data (read from a file) in one or

more windows using a supplied,

simple GUI library

Simple program with little data

and low code complexity

PAT: 441 SLOC, 7 classes

ALT: 374 SLOC, 7 classes

1: Add another kind of

window (the window itself

was supplied).

2: Let the user choose

which windows should be

visible

PAT: OBSERVER

ALT: None

Boolean

Formulas

(BO)

A system for storing and manip-

ulating boolean formulas, rep-

resented in a hierarchical data

structure.

Relatively complex, using a re-

cursive data structure.

PAT: 471 SLOC, 11 classes

ALT: 372 SLOC, 8 classes

1: Evaluation of formulas

2: Change name of one

method, breaking the

COMPOSITE pattern

PAT: COMPOSITE,

VISITOR

ALT: COMPOSITE

Comm.

Library

(CO)

Wrappers for communication

primitives such as transmit,

receive, compress and

decompress

Very little data and not very

complex. Simple primitives with

similar interfaces

PAT: 404 SLOC, 6 classes

ALT: 342 SLOC, 1 class

1: Add a wrapper for a

new (supplied) primitive

2: Determine the

conditions leading to a

certain status value;

determine how to create a

channel with certain

functionality

PAT: DECORA-

TOR

ALT: None

Graphics

Library

(GR)

Represent graphic primitives

such as point, line and circle, and

a system for drawing them on

several kinds of device. Methods

for creating devices and

corresponding primitives.

Data structure is partly

recursive, but less complex than

in “Boolean Formulas”. The code

is larger than the other

programs, but well structured

PAT: 683 SLOC, 13 classes

ALT: 667 SLOC, 11 classes

1: Add a new graphics

device and corresponding

subclasses of primitives

2: Determine whether a

running supplied method

will result in a certain

output

PAT: ABSTRACT

FACTORY, COM-

POSITE

ALT: ABSTRACT

FACTORY

The rest of the factors (pre/post, pat/alt, individual differences) were

discussed on a per-task basis.

56

Distribution-independent bootstrap methods were used to evaluate

mean elapsed times and derive P-values for the differences (Efron and

Tibshirani, 1993). Such differences were calculated for each pair that

corresponded to a hypothesis, eg., for PRE-ALT vs. POST-ALT for a

particular program and work task. Numerous significant differences

were found and compared with the expected trends (hypotheses) for

each work task. For many tasks, all groups achieved near-perfect cor-

rectness, so the dependent variable “correctness” was often ignored

(Prechelt et al., 2001), p. 1136.

1.3 Current replication

We wished to increase the realism of the experiment (Sjøberg et al.,

2002), and attempted to do so in two ways: 1) we used a real program-

ming environment, instead of annotations to paper printouts, and 2)

our subjects came from multiple consultancy companies and were paid

for their participation, instead of being volunteers from a single com-

pany.

We used the same general design of the experiment and the exact same

set of four tasks, with a PAT and ALT program version of each. The pro-

gram code was identical to that used in the original experiment, except

for corrections of minor errors. The same course on Design Patterns

was taught by the same person (Walter Tichy), using the same course

materials.

In the terminology of Lindsay and Ehrenberg, this can be considered a

relatively “Close” replication (Lindsay and Ehrenberg, 1993). While an

identical replication is neither possible nor particularly desirable, we

designed ours to keep it as close as possible, except for differences that

are either unavoidable or explicitly desired.

In this case, the difference in actual subjects and their nationality was

unavoidable. Their background was roughly the same and was eval-

uated using the same methods. The use of paid subjects from more

than one company, and the use of a programming environment, were

motivated by the increased realism they offer.

57

1.3.1 Logging and data collection

Our subjects used their own laptop PC’s as terminals, while the actual

programming environment ran on a set of Windows Terminal Servers.

This made it possible to install various non-intrusive logging tools to

collect additional data, beyond the correctness and time variables (as

well as the post-mortem questionnaire) of the original design.

To gain insight into the programming process of each subject, a copy

of the program file being edited was saved at every compilation, to-

gether with information on compilation errors, editing time (as a fur-

ther check) and breakpoint and debugging information. It is, therefore,

possible to detect the changes made for each compilation, which often

occurs every few minutes, as well as the debugging method used. This

data was used both for grading of solution correctness (Section 1.4.2)

and in the qualitative analysis of results (Section 1.5).

To limit the possibilities for cheating,and to lessen competitive stress,

subjects were placed so that two people sitting next to each other al-

ways worked on different programs. Copy/Paste operations through

the Terminal Server environment need multiple menu choices and in-

termediate files, making data exchange through IR ports impractical.

Inspection of the code logs revealed no traces of cheating or plagiarism.

1.3.2 Subject selection and background

Several international and Norwegian consultancy companies con-

tributed subjects. They were explicitly asked to provide people who

formed a reasonably representative sample, with regard to seniority,

experience and education.

In total, 44 subjects were paid for their participation, on three scales

(junior, intermediate, senior). The employers determined the scale

for each participant. Additionally, payment was offered for a limited

amount of overhead per company, to encourage them to undertake a

serious selection process.

The subjects were mostly (39) professional software engineers, from 11

different companies. There were also five students at the master/PhD

58

level. The median education was five years and work experience was

four years. Five subjects had 20 or more years work experience. 17 sub-

jects had some experience with patterns, though generally with only

one or a few patterns, applied a few times. Only six subjects had prac-

tical knowledge of the patterns actually being tested.

Regarding prior experience with object-oriented programming and

C++, one third of the subjects answered that they had less than one year

experience with object-oriented programming (as opposed to other

paradigms); the average value was 2.4 years. 75% of the subjects had

written less than 25 000 lines of C++ code.

Thus, the participants in our replication generally had a relatively ex-

tensive education, but only limited practical experience, and initially

almost no relevant pattern knowledge. We would expect the lack of

practical experience to cause the subjects to spend more time on some

programming details than would experienced developers. This also

has some implications for the external validity of the experiment.

1.3.3 Group assignment

The subjects were assigned to the four groups using randomized block-

ing, where the groups were balanced (the blocks were not random, but

the assignment of members from each block to the groups was). Obvi-

ously, balancing all characteristics at once is not possible; the greatest

weight was given to knowledge of Design Patterns, and general experi-

ence. The subjects completed a survey form before the experiment, and

their answers were used to compute a “pre-qualification score”. The

subjects were ordered by this score, and those with the four highest

scores were randomly assigned, one to each group, then the next four,

etc.

Of the original 54 subjects who expressed an interest, 10 were unable

to participate. Of those, four cancelled after the final group assign-

ment, causing an imbalance in group sizes. Table 1.2 summarizes the

groups. Possible threats to validity stemming from the imbalances are

discussed in Section 1.7.8.

59

Table 1.2: Subject backgrounds for each of the four groups A–D

N Pat Educ Work OO prog C++

A 10 1 3.5 5.7 2.2 13300

B 12 1 4.7 5.3 2.6 16387

C 12 2 4.0 6.7 1.5 8509

D 10 2 4.1 7.7 3.4 18638

N = number of subjects,

Pat = number with previous knowledge of relevant pat-

terns,

Educ = median education (years),

Work = median work experience (years),

OO prog = median OO programming experience

(years),

C++ = mean number of C++ lines of code written.

1.3.4 Experiment conduct

The subjects were not told about the design of the experiment (the

presence of Pattern and Alternate versions), nor about what we were

measuring, logging or how this was done. The programming tasks

were presented as exercises for the patterns course, though the subjects

were told in advance that they were taking part in a combination of

course and experiment. The authors discreetly eavesdropped on con-

versations during lunch and in breaks, and the subjects did not to our

knowledge discuss the tasks.

The same general timetable was followed as in the original experiment:

The pre-test work tasks in the morning, then lunch, followed by the first

part of the Design Patterns course. On day two, the course continued

until lunch, and the post-test work tasks were conducted after lunch.

The participants were encouraged to work until they were done. On

day one there was a time limit (the start of the course), on day two

there was no formal time limit and the last subject left at 5.45 pm. Four

subjects ran out of time on day one, and in the questionnaire estimated

that they would have needed from one to three hours additional time to

complete their tasks. Since our analysis looks at both the time needed

60

for the tasks as well as the solution quality, these partial solutions were

graded and included in the data set. The analysis of elapsed time ex-

cluded solutions of low quality, regardless of the reason for the low

quality (Section 1.3.6).

1.3.5 Expectations and hypotheses

Since both the programs and the different patterns they contained were

of varying kind and complexity, the hypotheses varied. In some cases

we expected the PAT version to be easier to understand and modify,

while in other cases we expected the ALT version to have the advan-

tage. The expected effect of the patterns course also differed.

The hypotheses represent what we expected to observe based on soft-

ware engineering common sense. They were identical to those of the

original experiment, which used bootstrap methods to compare mean

work times for work tasks, either between PAT and ALT versions or be-

tween PRE and POST. The hypotheses were defined and evaluated sep-

arately for each program and work task.We reformulated the hypothe-

ses to correspond to our statistical approach, and they are presented in

tabular form in Section 1.3.8, table 1.3.

In addition to quantitative analysis of dependent variables, a qualita-

tive analysis was also made, the purpose of the latter being to try to

explain why the quantitative results were observed.

1.3.6 Model for analysis of time

To evaluate the observed quantitative data and enable a more com-

pact representation of the hypotheses, a regression-based approach was

adopted. The method used in the original experiment (bootstrap es-

timations of distributions of differences of means) only takes into ac-

count data for each pair of tasks considered, separately from all other

data. The model adopted here considers all the data simultaneously

and thereby enables us to better take into account differences between

individual subjects.

Since completion times have little meaning for solutions with low cor-

61

rectness, only those solutions achieving correctness score 4 (“Almost

correct”) or 5 (“Correct”) were used in this analysis.

The time used to execute a task may vary systematically by explanatory

variables such as program and task number, ALT or PAT version, and

amount of pattern knowledge. Define

timet,i = time used by individual i (i = 1, . . . , n) on task t (t = 1, . . . , 8),

on the condition that the corresponding solution correctness

was at least 4.

IP,t,i = 1 if task t for individual i were with PAT, else IP,t,i = 0,

IC,t,i = 1 if task t for individual i were done after the course, else IC,t,i =

0,

Further, let E(timet,i) = µt,i be the expected time used on task t, where

the expectation is taken over the sample population of programmers,

given specific values of the explanatory variables. We assume that the

logarithm of µt,i has the additive structure

log(µt,i) = αt + βt IP,t,i + δt(1 − IP,t,i)IC,t,i + γt IP,t,iIC,t,i (1.1)

where the α’s, β’s, δ’s and γ’s are regression coefficients that will be

estimated from the data.

The model can be transformed back to the original scale. The popula-

tion averaged expected time used on task t before the course, for ALT

programs, and with correctness at least 4 will be µt,i = bt = exp(αt).

The quantity bt will be called the base level for task t. The expected

time for a PAT program, before the course, and with correctness at least

4, will be µt,i = bt · exp(βt), such that

exp(βt) is the relative increase in time by using PAT instead of ALT

before the course, i.e., the “effect of Design Patterns before

course”.

Furthermore, the following quantities will be of interest:

exp(δt) is the relative increase in time from PRE-ALT to POST-ALT, i.e.,

the “course effect on alternate programs”,

exp(γt) is the relative increase in time from PRE-PAT to POST-PAT, i.e.,

the “course effect on Design Patterns programs”,

62

exp(βt + γt − δt) is the relative increase in time by using PAT instead

of ALT after the course, i.e., the “effect of Design Patterns after

course”.

The relative increases will be reported as percentage increases, i.e., in-

stead of reporting exp(βt), we will report 100 · exp(βt)− 100, etc.

If we assume that the observations timet,i are gamma distributed, and

independent for all t and i, the parameters can be estimated by max-

imum likelihood according to the theory of generalized linear models

(GLM) (McCullagh and Nelder, 1989). The gamma distribution is suit-

able for data that takes only positive values and are skewed to the right.

This is the case for the time data, which has 0 as lower limit, but no clear

upper limit (though it cannot be longer than a day). However, the inde-

pendence assumption is unrealistic, as we have multiple observations

for each individual subject, one for each work task.

Therefore, the parameters were instead estimated by the method of

Generalized Estimating Equations (GEE) (Diggle et al., 1994; Liang and

Zeger, 1986), using the software package Oswald (Smith et al., 1996).

GEE is an extension of GLM, developed specifically to accommodate

data that is correlated within clusters (here individuals).

First, the user has to specify a so-called working correlation matrix, i.e.,

the structure of the correlations between observations within the same

individuals. For the present model, we have used an “exchangeable

correlation matrix”, which means that all observations within the same

individual have equal correlation. Then the estimation is carried out

under the assumption that (the structure of) the working correlation

matrix is true, and standard errors of the estimates are calculated.

The theory of GEE states that the estimates are asymptotically normal

distributed with the given standard errors. Further, under certain as-

sumptions, the estimates are consistent (i.e., converge to the true values

when the number of observations becomes large), even if the distri-

bution or the working correlation matrix is incorrectly specified. This

important result does not imply that the choices of distribution and

working correlation matrix are of no consequence. The closer they are

to reality, the more precise the estimates will be.

63

1.3.7 Model for analysis of correctness

It would be natural to handle the correctness scores by ordinal logis-

tic regression, i.e., by estimating the probabilities of getting the score

values 1, 2, .., 5, given the explanatory variables. However, it was im-

possible to estimate such a model by GEE or GLM, because the meth-

ods break down when all observations for certain combinations of the

explanatory variables have the same value. This happened in several

cases; for example, in the PAT group working on task 1 of the Stock

Ticker program in the post-test, all the subjects had a perfect score. In-

stead we have used the model presented below, assuming Gaussian

data.

The model for the quality or correctness score on each task is similar

to that for time. Define scoret,i ∈ (1, 2, 3, 4, 5) = score achieved by

individual i (i = 1, . . . , n) on task t (t = 1, . . . , 8), .

Further, let E(scoret,i) = µt,i be the expected score on task t, which is

assumed to have the structure

log(µt,i) = αt + βt IP,t,i + δt(1 − IP,t,i)IC,t,i + γt IP,t,iIC,t,i. (1.2)

The regression coefficients have different values than in the time model,

and slightly different interpretations. The expected score for task t be-

fore the course, for ALT programs now becomes µt,i = αt, where αt

will be called the base level for task t. The other coefficients give the

increase in score compared with the same alternatives as in the time

model. Note that positive values here mean improvements in cor-

rectness (higher correctness score), whereas negative values meant im-

provements in the time model (shorter time).

The parameters have again been estimated by GEE, but now using the

Gaussian family of distribution as mentioned above. We used an “iden-

tity working correlation matrix”, because the GEE algorithm did not

converge with an exchangeable working correlation matrix. Using an

identical working correlation matrix gives the same estimates as GLM,

but the estimated uncertainty limits are more robust to incorrect speci-

fication of the correlation.

In practice, the correctness scores take integer values, and are far from

64

Table 1.3: Hypotheses for time, legend on p. 65

Pr Task POST-ALT vs. POST-PAT vs. PRE-PAT vs. POST-PAT vs.

PRE-ALT PRE-PAT PRE-ALT POST-ALT

ST 1 S1 + S2 −

2 S3 −

BO 1 B2a − B2b − B1 + B3 −

2 B4 + B6 0

CO 1 C1 − C2 −

2 C3a + C3b +

GR 1 G2a − G2b − G1 +

2 G4a − G4b − G3a 0 G3b 0

Gaussian. As mentioned in the discussion of the time model, the GEE

estimates are robust also to mis-specification of the distribution. How-

ever, more data would be necessary for the asymptotics to hold, so the

uncertainty limits should be interpreted with some care.

To guard against a model optimized to find only the “desired” results

and ensure its statistical correctness, it was constructed by one of the

authors (M.A.) without prior detailed knowledge of the hypotheses

posed.

1.3.8 Reformulated hypotheses

Given the analysis models and the quantities

exp(βt), exp(γt), exp(βt + γt − δt), we can now express the hy-

potheses formally, in a tabular format. In Tables 1.3 and 1.4, a ‘+’ in a

cell means that we expected a positive value for the coefficient on the

log scale or greater than 1 on the original scale (longer time, higher

correctness score). A ‘−’ means we expected a negative coefficient on

the log scale or lower than 1 on the original scale. A ‘0’ means we

expected no change relative to the base level (log scale coefficient 0,

original scale 1), which is the ALT version of each program, before the

patterns course. The hypotheses and expectations are discussed in

detail in Section 1.5.

65

Table 1.4: Hypotheses for correctness

Pr Task POST-ALT vs. POST-PAT vs. PRE-PAT vs. POST-PAT vs.

PRE-ALT PRE-PAT PRE-ALT POST-ALT

ST 1

2

BO 1

2 B5 −

CO 1

2 C4a − C4b −

GR 1

2

Note that empty cells in this table mean that no hypothesis was ad-

vanced with respect to this program/task/parameter combination. As

this is a replication of an earlier experiment, we did not change any

hypotheses or advance any new ones. Significant observations that do

not correspond to one of the hypotheses are discussed in Section 1.5.6.

The numbering of the hypotheses was rendered consistent with those

in the original experiment, to make comparisons easier.

The headings refer to the effect measured: POST-ALT vs. PRE-ALT

shows the course effect (from pre-test to post-test) on the ALT version

programs, while PRE-PAT vs. PRE-ALT shows the effect of going from

ALT to PAT version, both taken in the pre-test only.

1.4 Results

1.4.1 Validation of raw data

The first step in the analysis was to check that there were no errors in

the raw data resulting from misunderstandings or gross technical prob-

lems. The only such case was one subject who had performed the work

tasks completely out of order. All data from this subject was therefore

dropped.

66

1.4.2 Grading of correctness

The grading of the solution correctness used the scale described

in Section 1.2.2 above, ranging from “Misunderstood” to “Cor-

rect”.Correctness was determined by first compiling and running the

final solution saved by each subject. Then, the final solution code was

inspected to determine the magnitude of any problems. Finally, all in-

termediate source files were inspected to arrive at a better understand-

ing of any errors and the solution strategy. The grading was done by

one of the authors using a system that presented the source files, pro-

gram output, etc. The subject information was fully anonymised at this

point (to the grader) and the subjects were graded in random order.

We also determined whether each solution used the patterns present in

the code. Note that “Correct” does not imply that the patterns present

in the code, if any, were actually used in the solution ; only that the

solution produced the correct output.

Four subjects had consistently low-quality solutions. Inspection on a

per-compilation basis revealed that their C++ proficiency was so low

that it would significantly mask any other effect. None of them finished

all tasks, and most had given up (i.e., stopped work while the solution

was nonworking and there was more time available) on more than one

task. All data from these subjects was also dropped. Since their solu-

tion correctness was consistently low across both PAT and ALT program

versions, this introduces no significant bias.

1.4.3 Refinement of the analysis model

There were several candidates for explanatory variables other than

those described in Sections 1.3.6 and 1.3.7. In the model for dependent

variable time, candidate explanatory variables were the pre-qualifi-

cation score and the correctness of the solutions. The pre-qualification

score (as discussed in Section 1.3.3) should be significant if it is corre-

lated with the actual performance of the subjects. An analysis of the

data showed that this was not the case. The coefficient had a value

close to 0 and was not significant.

67

We interpret this as showing that the pre-qualification score bears little

relation to the subjects’ actual performance. At the same time, the ex-

perimental design is quite robust with respect to effects of individual

performance differences, and therefore also balancing of groups. Since

all the subjects performed tasks on all the programs, imbalances be-

tween subjects and groups will increase the total variability, but have a

relatively small chance of causing systematic skewing of the results.

Solution correctness could also have been included in the analysis

model for time, in the form of an indicator variable IQ,t,i with value

1 if solution correctness 5 were achieved by a subject on a task. One

might expect a positive value for this coefficient, indicating that achiev-

ing higher correctness takes more time. An analysis showed that it was

also close to 0 and not significant.

Our interpretation is that high correctness was not achieved at the ex-

pense of time; i.e., skilled individuals tend to favour time and correct-

ness equally.

In the model for dependent variable correctness, the pre-qualification

score had a low, positive value (p = 0.026), but the values and con-

fidence intervals of the other estimated coefficients in the model were

not significantly changed by including this factor.

To summarize, including these candidate explanatory variables caused

only very slight changes to the values and confidence intervals of the re-

maining coefficients, in the models for both time and correctness. They

were therefore not included in the final model for time.

1.4.4 Effect of programming tool use

We wished to determine whether any subjects had spent a significant

amount of time on “technical details”, i.e., problems with programming

language syntax, obscure compiler error messages or other factors that

might be classed as not relevant to the effects of design patterns. This

determination was necessarily exploratory in nature and proceeded as

follows:

An analysis was performed of each separate compilation of each solu-

68

tion. A “syntactical change” was defined as one that did not introduce

new features or functions, but only changed the statement that caused

the compilation errors. Typically this consisted of trying out various

combinations of the ., ->, :: or * operators, different placements of []

brackets in attempted array declarations, etc. Another example was a

subject who spent about 15 minutes looking for a missing closing brace;

the error messages from the compiler were not helpful.

If the program submitted for compilation did not compile, the only

changes were localized and syntactical, and there was a contiguous se-

ries of such changes all related to one or a few lines, those individual

compilations were classified as “irrelevant technical detail”. The sum

of the editing times for such compilations was subtracted from the total

elapsed time for that task, as a correction.

Such corrections2 were made for 33 out of the 43 subjects. The regres-

sion analysis was then run on both corrected and uncorrected data, to

check whether the corrections actually had any effect, and to guard

against the introduction of any bias. Ideally, we would want the con-

fidence intervals to shrink when using the corrections, though without

significantly changing the point estimates.

The corrections did achieve some reduction in the confidence intervals,

and did so without materially affecting the point estimates. However,

the reduction was nowhere near significant and did not change the

degree of support or rejection for any hypothesis. Since the grading

that underlies such corrections is necessarily somewhat subjective, and

there is a risk of penalizing subjects who simply spent time thinking

about the problems without submitting compilations, the corrections

were dropped and the final analysis done on uncorrected, raw data.

2. All data is stored in a relational database together with the relevant source files,

so that it is possible at any time to retrieve data with or without any corrections and

grades, inspect the classification of each compilation, and the file difference giving rise

to it.

69

1.4.5 Summary of quantitative results

The results from the analysis using the regression models are shown in

graphically in Figures 1.2 and 1.3, and in tabular form in Table 1.7 using

the same layout as for the hypotheses in Table 1.3.

In the Figures, the point estimates for the coefficients are dots and 95%

confidence limits are shown as vertical bars; a significant (at 5%) result

is one where the bars do not cross the 0 line. As detailed in Section 1.3.6,

the estimates from the regression model are asymptotically normal dis-

tributed, providing the basis for calculation of the confidence intervals.

Descriptive statistics are given in Table 1.5 for working times and Ta-

ble 1.6 for correctness scores. The first four columns in the tables con-

tain the key to the measurement—the program, work task, PAT/ALT

version, and pretest/posttest.

From Table 1.7 we can see that significant results (at 5%) were achieved

for five out of the total 20 hypotheses, while another seven tests showed

a reasonably certain direction, either supporting or contradicting the

hypothesis.

The regression model provides strong support for the hypotheses in

four cases:

1. Using the VISITOR pattern causes problems if the underlying data

structure changes

2. DECORATOR is a pattern that requires training, but then yields

easier maintenance

3. DECORATOR makes it more difficult to trace the flow of control in

a program, and increases the time needed to understand it

4. Like DECORATOR, OBSERVER requires some training, but is then

easy to understand and shortens maintenance

The hypothesis that a short course is sufficient to profit from ABSTRACT

FACTORY was strongly contradicted. The observed result was actually

the opposite; subjects took significantly longer after the course than

before to complete the task.

70

Line Prog Task Pre/Post Ver Min Q1 Mean Q3 Max N

1 BO 1 Pre Alt 27 88 129 175 298 9

2 BO 1 Post Alt 27 45 86 130 186 9

3 BO 2 Pre Alt 0 4 13 20 37 6

4 BO 2 Post Alt 4 8 14 17 39 8

5 BO 1 Pre Pat 45 86 108 135 145 11

6 BO 1 Post Pat 20 55 99 160 173 10

7 BO 2 Pre Pat 6 13 26 39 66 8

8 BO 2 Post Pat 1 3 24 46 65 6

9 CO 1 Pre Alt 22 35 63 85 97 10

10 CO 1 Post Alt 24 48 69 90 117 10

11 CO 2 Pre Alt 7 9 15 20 33 10

12 CO 2 Post Alt 7 9 19 27 47 10

13 CO 1 Pre Pat 44 45 65 84 124 8

14 CO 1 Post Pat 17 22 33 43 60 9

15 CO 2 Pre Pat 12 18 33 45 66 8

16 CO 2 Post Pat 7 11 20 29 45 9

17 GR 1 Pre Alt 32 51 91 136 196 10

18 GR 1 Post Alt 37 57 105 155 214 11

19 GR 2 Pre Alt 13 16 37 51 125 8

20 GR 2 Post Alt 11 22 41 43 122 11

21 GR 1 Pre Pat 36 59 78 89 155 9

22 GR 1 Post Pat 101 104 127 145 190 9

23 GR 2 Pre Pat 9 14 28 42 65 9

24 GR 2 Post Pat 6 9 24 38 50 9

25 ST 1 Pre Alt 6 7 14 21 32 9

26 ST 1 Post Alt 7 13 26 35 65 9

27 ST 2 Pre Alt 12 15 31 48 68 9

28 ST 2 Post Alt 2 23 50 77 143 9

29 ST 1 Pre Pat 1 3 22 27 85 10

30 ST 1 Post Pat 2 6 14 26 40 11

31 ST 2 Pre Pat 1 14 36 56 91 9

32 ST 2 Post Pat 5 7 15 22 36 11

Table 1.5: Descriptive statistics for time: Each line contains the minimum, first

quartile, mean, third quartile and maximum values of programming time in

minutes, for one combination of Program, ALT or PAT version, task number

and day number. Number of subjects is also given.

Each hypothesis in table 1.3 refers to one pair of lines in this ta-

ble, e.g., hypothesis (B2a: −) compares BO/ALT/Task 1/POST: line 2 to

BO/ALT/Task 1/PRE: line 1, and expects the former to be lower (shorter

time).

71

Line Prog Task Pre/Post Ver Min Q1 Mean Q3 Max N

1 BO 1 Pre Alt 1 3.0 3.9 5.0 5 9

2 BO 1 Post Alt 3 4.0 4.6 5.0 5 9

3 BO 2 Pre Alt 2 2.8 4.2 5.0 5 6

4 BO 2 Post Alt 1 2.0 3.8 5.0 5 8

5 BO 1 Pre Pat 2 2.0 3.5 5.0 5 11

6 BO 1 Post Pat 1 1.8 3.0 5.0 5 10

7 BO 2 Pre Pat 2 2.3 3.6 5.0 5 8

8 BO 2 Post Pat 2 2.0 2.8 4.3 5 6

9 CO 1 Pre Alt 3 3.8 4.5 5.0 5 10

10 CO 1 Post Alt 3 3.8 4.4 5.0 5 10

11 CO 2 Pre Alt 3 3.8 4.4 5.0 5 10

12 CO 2 Post Alt 5 5.0 5.0 5.0 5 10

13 CO 1 Pre Pat 5 5.0 5.0 5.0 5 8

14 CO 1 Post Pat 5 5.0 5.0 5.0 5 9

15 CO 2 Pre Pat 4 5.0 4.9 5.0 5 8

16 CO 2 Post Pat 4 5.0 4.9 5.0 5 9

17 GR 1 Pre Alt 1 3.0 3.7 5.0 5 10

18 GR 1 Post Alt 3 5.0 4.7 5.0 5 11

19 GR 2 Pre Alt 2 2.0 3.9 5.0 5 8

20 GR 2 Post Alt 2 4.0 4.5 5.0 5 11

21 GR 1 Pre Pat 5 5.0 5.0 5.0 5 9

22 GR 1 Post Pat 3 4.5 4.7 5.0 5 9

23 GR 2 Pre Pat 2 2.0 3.9 5.0 5 9

24 GR 2 Post Pat 2 2.0 3.2 5.0 5 9

25 ST 1 Pre Alt 4 5.0 4.9 5.0 5 9

26 ST 1 Post Alt 4 5.0 4.9 5.0 5 9

27 ST 2 Pre Alt 4 4.0 4.4 5.0 5 9

28 ST 2 Post Alt 3 4.0 4.4 5.0 5 9

29 ST 1 Pre Pat 1 4.8 4.5 5.0 5 10

30 ST 1 Post Pat 5 5.0 5.0 5.0 5 11

31 ST 2 Pre Pat 5 5.0 5.0 5.0 5 9

32 ST 2 Post Pat 4 5.0 4.9 5.0 5 11

Table 1.6: Descriptive statistics for quality: Each line contains the minimum,

first quartile, mean, third quartile and maximum values of the correctness

score, for one combination of Program, ALT or PAT version, task number and

day number. Number of subjects is also given.

Each hypothesis in table 1.4 refers to one pair of lines in this table.

72

Table 1.7: Summary of quantitative results—work time

Pr Task POST-ALT vs. POST-PAT vs. PRE-PAT vs. POST-PAT vs.

PRE-ALT PRE-PAT PRE-ALT POST-ALT

ST 1 S1 S +52% S2 SS −48%

2 S3 SS −72%

BO 1 B2a S −33% B2b — B1 WC −17% B3 WC +29%

2 B4 S +108% B6 WS 18%

CO 1 C1 WC +13% C2 SS −49%

2 C3a SS +117% C3b —

GR 1 G2a WC +2% G2b SC +62% G1 —

2 G4a C +66% G4b — G3a S −9% G3b C −39%

Cell contents: To the left is the program/hypothesis identification, followed

by the degree of support in the centre. SS means Strongly Supported,

SC means Strongly Contradicted (significant at 5% level). S means supported,

C means contradicted (not strictly significant at 5%, but still relatively clear ef-

fect). WC means weakly contradicted, similarly, WS denotes weak support.

“—” denotes an inconclusive result.

The estimated effect in % of the factor on the observed time (multiplicative) is

given to the right.

Table 1.8: Summary of quantitative results—correctness

Pr Task POST-ALT vs. POST-PAT vs. PRE-PAT vs. POST-PAT vs.

PRE-ALT PRE-PAT PRE-ALT POST-ALT

ST 1

2

BO 1

2 B5 S −20%

CO 1

2 C4a C +15% C4b WS −5%

GR 1

2

73

•

•

•

•

•

•
•

•

Base level

1 2 1 2 1 21 2
BO CO GRST

0

50

100

150

av
er

ag
e

tim
e

(m
in

ut
es

)

•

•
•

•

• •
•

•

Effects of design patterns before course

1 2 1 2 1 21 2
BO CO GRST

-2

-1

0

1

2

co
ef

fic
ie

nt
 v

al
ue

s

-75

-50

0

100

400

re
la

tiv
e

ch
an

ge
 (

%
)B1 B4

C1

C3a G1

G3a

S1

• •
• • •

•• •

Course effects on alternate programs

1 2 1 2 1 21 2
BO CO GRST

-2

-1

0

1

2

co
ef

fic
ie

nt
 v

al
ue

s
-75

-50

0

100

400

re
la

tiv
e

ch
an

ge
 (

%
)

B2a G2a G4a

• •

•

• •

••
•

Effects of design patterns after course

1 2 1 2 1 21 2
BO CO GRST

-2

-1

0

1

2

co
ef

fic
ie

nt
 v

al
ue

s

-75

-50

0

100

400

re
la

tiv
e

ch
an

ge
 (

%
)

B3

B6

C2

C3b

G3b

S2 S3

•

• • •

•
•

•
•

Course effects on design pattern programs

1 2 1 2 1 21 2
BO CO GRST

-2

-1

0

1

2

co
ef

fic
ie

nt
 v

al
ue

s

-75

-50

0

100

400

re
la

tiv
e

ch
an

ge
 (

%
)

B2b G2b G4b

Analysis of time

Figure 1.2: Analysis of elapsed times for all programs and tasks

The upper left panel of the Figure shows the base levels bt for each task, given

in minutes. The estimates are given as dots, whereas the vertical lines are 95%

confidence intervals. The four lower panels have the same structure as the

upper left panel, but show changes relative to the Base level. Hypotheses are

shown, with the position of the label indicating the direction expected effect.

The log scale is given at the left of the panel, and the corresponding relative

change in % is given at the right side of the panel.

74

•
• • •

• •

•
•

Base level

1 2 1 2 1 21 2
BO CO GRST

0

1

2

3

4

5
A

ve
ra

ge
 s

co
re

•
•

• •
•

•
•

•

Effects of design patterns before course

1 2 1 2 1 21 2
BO CO GRST

-2

-1

0

1

2

C
ha

ng
e

in
 s

co
re

B5 C4a

•

•
•

•
•

•
• •

Course effects on alternate programs

1 2 1 2 1 21 2
BO CO GRST

-2

-1

0

1

2

C
ha

ng
e

in
 s

co
re

•
•

•
• •

•

•
•

Effects of design patterns after course

1 2 1 2 1 21 2
BO CO GRST

-2

-1

0

1

2

C
ha

ng
e

in
 s

co
re

C4b

• •
• •

•
•

•
•

Course effects on design pattern programs

1 2 1 2 1 21 2
BO CO GRST

-2

-1

0

1

2

C
ha

ng
e

in
 s

co
re

Analysis of correctness

Figure 1.3: Analysis of correctness effects for all programs and tasks

The upper left panel of the Figure shows the base levels αt for each task, given

as average scores. The four lower panels show changes in scores compared

with the relevant alternative. Some confidence intervals have 0 length. For

the corresponding estimates, all relevant data had the same correctness, or

the same change in correctness. In such cases, the GEE method is unable to

compute confidence intervals.

75

1.5 Discussion

The quantitative results and hypothesis tests form only one part of

the total results from the experiment, and do not automatically result

in better understanding. The quantitative measures must be comple-

mented with qualitative evaluations. Logging all compilations pro-

vides a basis for such evaluations, and allows us to gain insight into

what happened, and from there to formulate explanations of why.

This discussion is structured around each program and work task, since

their kinds and patterns were different, and revealed different aspects

of patterns and their effects.

1.5.1 Observer: Stock Ticker (ST)

Stock Ticker is a program for directing continuous streams of data

(stock trades) to one or more displays that are part of the program.

Both versions of ST consist of seven classes, and in the PAT version (441

lines) four of them participate in an OBSERVER. The ALT version in-

cludes one class that contains an instance variable for each display, and

updates the displays when data changes. There is no dynamic registra-

tion of observers in this version, which has 374 lines. The line counts

include blank lines and comments.

The actual displays are implemented using a very simple Window inter-

face. The subjects did not use this interface directly, because the display

objects required by the work tasks were already present in the code.

Work task 1

“In the given program, only one of the three display types is used.

Enhance the program such that a second display (of type volume)

is shown”. The PAT groups only had to invoke the pattern method

subscribe() with a new instance of the display. The ALT groups had

to introduce an instance variable for the new window and invoke its

update() method to show new data. The main work in this program is

to understand how it operates, because the actual changes required are

76

very small in both cases.

Hypotheses: In the pretest, we expected the PAT group to need more

time (S1: +), since subjects without pattern knowledge need to analyze

the OBSERVER to determine how it operates. After the course, we ex-

pected the opposite (S2: −), because the OBSERVER should then have

been easy to grasp and use.

Results: S1:+ . +52% +253

−34
is weakly supported.3 PRE-PAT subjects did

use 52% more time than PRE-ALT. Most of the difference can be at-

tributed to one outlier data point; without it, the PRE-PAT and PRE-ALT

groups are virtually identical with respect to time used. The correctness

is also consistently high for both groups.

The outlier is a subject who did not understand the OBSERVER pattern,

and actually reinvented and reimplemented an equivalent structure,

which explains why it took so long to complete the task.

Hypothesis S2:− . −48% 0

−73
is quite strongly supported. There were

no significant differences in the correctness of the solutions.

Work task 2

“Change the program so that displays can be dynamically selected at

runtime”. The code included a third display type for this purpose,

as well as a simple method to get user input: bool askYesNo(char

*prompt);

The PAT groups needed to do very little; just ask the user two or three

questions, and subscribe() to those displays that were selected. The

ALT groups would have to add a mechanism for extending the number

of displays with more instance variables.

Hypotheses: In contrast to the original pen and paper experiment,

where Prechelt et al. stated that the PAT groups did not need to do

anything (Prechelt et al., 2001), the subjects in this experiment actually

3. Notation: The hypothesis is identified by its letter/number combination as in Ta-

bles 1.3, 1.4, 1.7 and 1.8, followed by the direction of the expected effect, and observed

effect in %. The lower and upper limits of the 95% confidence interval are given as

subscript and superscript.

77

had to implement a change. We did, however, expect the PAT groups to

have a clear advantage (S3: −), because their changes are much smaller;

apart from getting user input, only a test around each subscribe()

method invocation is needed.

Results: S3:− . −72%−45

−85
is strongly supported. The POST-PAT group

spent less than half the time used by the POST-ALT group. Most sub-

jects in the POST-PAT group chose to add Boolean variables to the

TradeInfo class constructor to specify the users’ choice, while a few

put the subscribe calls into the main program.

All the subjects in the ALT groups interpreted the task to mean a choice

between a fixed number of displays: those already present in the code.

None implemented a fully dynamic solution that would easily have

accommodated another display.

Correctness was significantly higher for the PAT groups than for the

ALT groups both before and after the course. The effect of the course

was in this case to reduce the time needed to arrive at a high-correctness

solution. OBSERVER, therefore, seems to be a pattern that can be

grasped without much training, but training saves time.

1.5.2 Composite and Visitor: Boolean Formulas (BO)

Boolean Formulas contains a library for representing Boolean formulas

(OR, AND, XOR, NOT and variables), and methods for printing the formulas

in two different styles. It also contains a small main program that sets

a few variables, constructs a formula and prints it using both methods.

The PAT version consists of 11 classes over 471 lines. The formulas

are represented using COMPOSITE, and the printing methods use VISI-

TORs. For each concrete COMPOSITE class there is a printing method in

each of the VISITORs, and each COMPOSITE class provides a dispatch

method for the VISITOR. Internally, the COMPOSITEs use three differ-

ent data structures: NOT has a single operand, XOR has two operands in

a classic left-right scheme, while AND and OR are implemented with a

common base class and have a dynamic number of operands to han-

dle expressions such as a AND b AND c (this would be one AND with

78

three operands). Recursion is a central feature of the COMPOSITE pat-

tern. The VISITOR solution allows the addition of new functions with-

out changing the COMPOSITEs.

The ALT version has the same COMPOSITEs, but is shorter, with eight

classes over 372 lines. The VISITOR is completely missing, and the

printing functionality is implemented directly as methods in each con-

crete COMPOSITE, so adding a new function means adding methods to

each concrete COMPOSITE.

Work task 1

“Enhance the program to evaluate Boolean formulas, i.e., to determine

the result for a given formula represented by a Composite and values

of the variables”.

The printing methods serve as structural examples. The PAT groups

had to create a new VISITOR, while the ALT groups had to add new

methods to each concrete COMPOSITE class.

Hypotheses: In principle, it should be easier to create a single new class

similar to another existing class, rather than having to add methods to

several classes. This should favour the PAT group.

However, VISITOR is quite a difficult pattern to comprehend and use, so

we expected that the PAT group would need more time to understand

the structure than the ALT group would need to simply add methods

(B1: +).

Gaining patterns knowledge during the course should help both

groups, since there is a COMPOSITE in both the PAT and ALT versions of

the program (B2a: −), (B2b: −). The PAT group should get an additional

advantage from the VISITOR pattern after the course (B3: −).

Results: B1:+ . −17% +14

−40
was not supported; the PRE-PAT group actu-

ally needed 17% less time than the PRE-ALT group, though much of the

difference was due to one outlier.

A more interesting observation comes from the correctness model in

Table 1.8 (VISITOR). First, the correctness was quite low, and lower

79

for the PAT group before the course. Second, the ALT group benefited

from the course, while the PAT group actually got worse. Perhaps most

interesting is that only three out of 12 subjects in the PRE-PAT group

actually used the VISITOR. The rest implemented changes directly on

the COMPOSITE and ignored the two VISITORs in the code.

B2a:− .−33% +2

−56
and B2b:− . +4% +86

−42
had some support, most for B2a.

There was, however, some rise in correctness for the ALT group.

B3:− . +29% +144

−32
was inconclusive, with no significant difference vis-

ible. However, the correctness of the PAT group solutions was at the

same low level as in the pre-test, and the subjects were still not using

VISITOR much—four out of 10, and of those four, only one succeeded.

Inspection of the solutions on a compilation-by-compilation basis re-

vealed that many subjects struggled with the recursion inherent in the

COMPOSITE. This is somewhat surprising, given that the subjects were

professional developers, many employed by major consultancy corpo-

rations.

The conclusion is that VISITOR was so difficult that even after a course

that gave the instructor excellent feedback (grade better than 4 out 5),

most subjects either ignored it or were confused by it.

We may also speculate that developers nowadays use predefined con-

tainer classes so much that recursion is simply not used on a daily basis

any more. This has implications for the design of future experiments,

and for the usefulness of Design Patterns that depend heavily on recur-

sion in their structure.

Work task 2

“After a code review, an incompetent manager requires you to change

the method operatorname() to varname() on the VarTerm class only”.

This in effect broke the COMPOSITE pattern, because one of the concrete

classes no longer followed the declaration of the superclass.

Hypotheses: We expected that the ALT group would find the pre-test

easier than the PAT group (B4: +), because all the resulting changes only

80

have to be made in the class already being changed. The PAT group

would have to modify the VISITOR classes. One of the modifications is

somewhat tricky to spot, so we also expected lower correctness (B5: −).

In the post-test, we expected that the PAT and ALT groups would be

roughly equal, because the magnitude of the change is the same in both

cases (B6: 0).

Results: B4:+ . +108% +456

−22
seemed to be supported, in that the PAT

group needed twice as long as the ALT group. However, we were still

dealing with subjects who in five cases out of seven were not using

VISITOR. There was quite a lot of confusion visible in the solutions,

and the correctness was quite low B5:− . −20% +18

−40
. Also, four subjects

were missing (relative to work task 1), because they had run out of time.

B6:0 . 18% +132

−40
was contradicted; the correctness of the PAT solutions

was markedly lower than that of the ALT solutions (average grade 2.8

vs. 3.8).

This reinforces the conclusion from work task 1: our subjects were

badly confused by the VISITOR pattern; only 6 out of 21 achieved a

“Correct” or “Almost correct” solution (PRE and POST combined).

1.5.3 Decorator: Communication Channels (CO)

This program is mostly a wrapper library. A communication channel

establishes a connection for transparently transferring packets of data

of arbitrary length. One can turn on additional functionality for log-

ging, compression and encryption.

The library does not implement the functionality itself, but only pro-

vides a FAÇADE for a system library (whose internal source code was

unavailable to the subjects). However, this application of the FAÇADE

pattern is irrelevant to the experiment.

The PAT version uses a DECORATOR scheme to add extra functionality

to a bare channel. It consists of six classes over 404 lines.

The ALT version has only a single class, using boolean flags and if

sequences for turning functionality on and off during the processing of

81

one packet. It consists of 342 lines, and is the only instance where the

ALT version has a structured (as opposed to object-oriented) design.

Work task 1

“Enhance the functionality of the program so that error correction can

be added”.

The actual encoder/decoder for the error correction was available as

an interface with a working, hidden implementation. Its interface was

exactly analogous to one of the functions that were already in use.

Hypotheses: DECORATOR has two competing influences. On the one

hand, it nicely separates the functionality and all but removes depen-

dencies, so that it should be easy to add a new function by adding a

new DECORATOR, rather than having to find the right place in a block

of if statements.

On the other hand, this separation also means that it is more difficult

to trace what is actually going to happen at runtime, as opposed to

a situation in which there is a structured block of code with a clear

sequence of flag tests.

We expected the first influence to be stronger, and hence that it would

be quicker to enhance the PAT version (C1: −), especially at higher lev-

els of pattern knowledge (C2: −).

Results: C1:− . +13% +69

−25
was not supported, because the groups spent

virtually the same time. However, the correctness of the solutions was

much better for the PAT group, with a perfect (10/10) “Correct” score

for all PRE-PAT subjects. In the PRE-ALT group, there were nine “Cor-

rect”, one “Almost correct” and two “Right idea”.

Expectation C2:− . −49%−28

−64
was strongly supported. Also the cor-

rectness was again better with nine “Correct”, vs. six “Correct”, two

“Almost correct” and two “Right idea”.

The conclusion here is that DECORATOR is a pattern that can be grasped

with reasonable ease, and contributes to higher correctness. With train-

ing, its use also results in considerably faster development.

82

Work task 2

A communication channel—as implemented in the program—has an

internal state (open, closed, failed) that is altered by certain opera-

tions. Work task 2 asked the subjects to “determine when a reset() call

will return the ’impossible’ result”. This required the subjects to find

where the underlying state was changed, and how. This should be eas-

ier for the ALT group, where the state changes are strongly localized,

so we expected shorter time (C3a: +), (C3b: +) and higher correctness

(C4a: −), (C4b: −).

The subjects were also asked to “create a channel that performs com-

pression and encryption”. Again, the ALT group should have the ad-

vantage, since they only needed one new statement. The PAT group

needed to determine the correct nesting of DECORATORs to achieve the

same result.

Results: C3a:+ . +117% +260

+31
was strongly supported in the pre-test,

but inconclusive in the post-test (C3b:+ . +9% +88

−37
). Correctness was

actually better for the PAT group in the pre-test, contrary to C4a:− .

+15% +22

−5
, and remained so in the post-test C4b:− . −5% +5

−10
.

This seems to reinforce our conclusion that DECORATOR had a mainly

positive effect and can be grasped without too much training. Any

problems caused by the delocalisation that results from applying this

pattern were outweighed by the greater ease of composition of func-

tions.

1.5.4 Composite and Abstract Factory: Graphics Library (GR)

The Graphics Library enables creation, manipulation and drawing of

simple graphical objects, such as points, lines and circles. They can be

rendered to different displays (alphanumeric or pixel), represented as

output device classes with standardized interfaces.

In a central class a device context (type) is selected, and depending on

this choice different versions of the graphical objects are created. Some

basic objects (points and lines) are implemented identically for all de-

vices, but circles have special implementations per device. Objects can

83

also be collected in groups, which can then be manipulated like objects

themselves.

The PAT version uses ABSTFACTORY for the generator classes, and

COMPOSITE for the hierarchical object grouping.

The ALT version uses a single generator class with switch statements

for the different devices, per object type. Combination and manipula-

tion of objects is achieved with a quasi-COMPOSITE, the only difference

being that there is no hierarchical group nesting.

This pair of programs has the smallest structural differences of all of

the four pairs. The PAT version has 13 classes over 683 lines, the ALT

version uses 11 classes over 667 lines. Both versions contain an identical

main program that defines an Olympic logo with five circles and a line,

rotates it 180◦ and draws it.

Output devices are represented by working classes with simple inter-

faces and hidden implementations, and can be run by the subjects.

Some sample output is also included in the task documentation.

Work task 1

“Add a third device type (a pen plotter)”. The PAT group had to intro-

duce a new concrete factory class, extend the factory selector method,

and add two concrete product classes using the supplied Plotter de-

vice interface. The ALT subjects instead had to extend the switch state-

ments; the product classes were the same.

This task was also one in which there was a difference from the original

experiment, because in the present case, subjects actually tried out their

solutions and ran into issues with scaling, forgetting to select a visible

pen, etc. These issues affect the “product classes”, which are common

to both the PAT and ALT versions. Since this extended the total time, we

expected to see less difference overall than in the original experiment.

Hypotheses: The actual volume of changes is the same for the PAT

and ALT groups, so the main difference should come from differences

in comprehension. The ALT program, with its localized switch state-

ments, should be easier to understand (G1: +).

84

Pattern knowledge should help both groups to deal with the COMPOS-

ITE (G2a: −), while the PAT group may derive an additional advantage

from better understanding of the ABSTFACTORY (G2b: −).

Results: G1:+ . −17% +40

−50
was inconclusive. If we ignore one ALT out-

lier, the groups were virtually identical with respect to time used.

However, the correctness was significantly better for the PAT group.

Inspection of the code revealed that several of the PRE-ALT subjects did

not use the supplied Plotter interface, but instead just copied one of

the existing output device interfaces. However, this did not necessarily

invalidate the test, since it is the structure more than the particular class

that matters.

The post-test, G2a:− . +2% +76

−41
, was inconclusive, with a hint in the

opposite direction—subjects needed more time after the course for the

ALT version. G2b:− . +62% +120

+19
was not supported: The PAT group

needed more time than the ALT group; this time all the subjects actually

implemented the plotter as intended.

It seems that use of ABSTFACTORY therefore had little influence on the

time needed to make the changes, but it may have contributed posi-

tively to quality. This agrees with the purpose of the pattern: to con-

centrate the knowledge of which objects should be created in one place.

The actual work remains roughly the same, but is localised instead of

being spread out.

Work task 2

“Determine whether a given sequence of statements will result in an x-

shaped figure”. This is a comprehension test on COMPOSITE, where the

key is to recognize that references, and not copies of objects, are stored

in an object group.

Hypotheses: First of all, we expected the subjects to actually try run-

ning the function containing the statements (it is present in the pro-

gram, but not called by default). This was in contrast to the original

experiment, where analysis was the only possibility. Consequently, we

expected correct answers.

85

The structure of both programs is similar, so no difference in time was

expected for PAT and ALT (G3a: 0), (G3b: 0), but we did expect the post-

test to be faster than the pre-test, due to knowledge about the COMPOS-

ITE (G4a: −), (G4b: −).

Results: High correctness was present only for the POST-ALT group.

All other groups had a significant number of incorrect answers, despite

the fact that most of them tested their solutions (visible traces in the

code logs).

G3a:0 . −9% +86

−56
and G3b:0 . −39% +32

−72
were inconclusive. The POST-

PAT group spent 39% less time than the Post-ALT group, but their cor-

rectness was significantly lower. Perhaps they were tricked by the ap-

plication of COMPOSITE and forgot to take the effect of object references

vs. object copies into account.

G4a:− . +66% +242

−20
and G4b:− . +11% +139

−48
were not supported; there

was no significant difference in time spent between the pre-test or post-

test. If anything, G4a tended in the opposite direction, with subjects

spending more time on the ALT version after the course. However, this

may simply be due to fatigue.

Due to scaling, a part of the figure would have been clipped and in-

visible, so we conclude that a number of subjects tried the drawing

method, and when they did not get a good visible result, they resorted

to (faulty) analysis instead of getting a good test output. After that, we

were probably measuring a combination of their C++ proficiency with

pointers and their approach to testing, rather than knowledge of De-

sign Patterns. However, the fact that they trusted their analysis rather

than actually making the test run well is interesting in itself.

1.5.5 Summary of qualitative results

We found evidence for both the usefulness and potential for harm of us-

ing Design Patterns, mostly as predicted by software engineering com-

mon sense. In summary:

OBSERVER —expectation: The pattern solution is more complicated

and harmful relative to the alternative solution, unless its flexibility is

86

required

Actual result: There was no significant harmful effect, even for subjects

with little or no patterns knowledge. After a short course, a significant

benefit was observed in terms of both time and correctness.

COMPOSITE, VISITOR —expectation: VISITOR is difficult to understand

and thus harmful.

Actual result: Both before and after the course, the majority of the sub-

jects did not even use VISITOR even though two examples were present

in the code. The correctness of the solutions was significantly lower

than in the alternate design.

DECORATOR —expectation: Delocalization of functionality is expected

to make it easier to change, but more difficult to analyze and call.

Actual result: The first expectation was supported, but the second was

contradicted. The correctness and time improved significantly after the

course, but the correctness was also better in the PAT version before the

course, for no large penalty in time spent.

COMPOSITE, ABSTFACTORY —expectation: The similarities in the de-

signs of PAT and ALT versions lead us to expect only minor differences.

Actual result: No overriding difference was observed, even though the

course helped with the ABSTFACTORY pattern, which was also present

in the ALT version.

1.5.6 Other observed effects

In this Section, we discuss cases where a significant effect was observed,

but no prior hypothesis existed. This situation arises because of the

regression-based analysis model, which automatically estimates more

coefficients than those needed to test the hypotheses of the original ex-

periment. These results are necessarily of an exploratory nature.

Since there are no hypotheses to use for labelling, we will instead refer

to the panel title in Figure 1.2 or 1.3, together with program abbrevia-

tion and task number. The observations are grouped by program and

thus pattern.

87

Stock Ticker / OBSERVER

Figure 1.2 (time): Course effects on design pattern programs, work task

2—this panel compares the time spent on the work task before (pre-

test) and after (post-test) the course, and there is a significant difference

present. In the post-test, the subjects used 60% less time than in the

pre-test.

In the corresponding coefficient for the ALT version, the opposite effect

is present, though without being significant. So the effect of the course

was to reduce the time used for the PAT version, and increase it for the

ALT version.

Part of the explanation lies with two subjects; one spent some time look-

ing for a typographical error (an extra closing brace that caused cryptic

error messages from the compiler), and the other struggled with the

syntax of arrays and enumerators. These two outliers increased the

time spent by the ALT group; but being outliers, did not cause the in-

crease to be statistically significant.

That the course should benefit the PAT group is as expected. The nature

of the program and task were such that understanding of the OBSERVER

pattern reduced the task to only a few lines. The corresponding panels

in Figure 1.3 (correctness, course effects) show almost no discernible

effects.

Figure 1.3 (correctness), Effects of design patterns before course and

Effects of design patterns after course both point in the same direction:

the solutions of the PAT version have a higher correctness. The effect is

significant in the pre-test and close to significant in the post-test. It re-

inforces the conclusion in Section 1.5.5 and contradicts the expectation

from the original experiment.

Communication Library / DECORATOR

Figure 1.2 (time): Course effects on design pattern programs, work task

1—the panel shows that the subjects who maintained the PAT version

of the program spent significantly less time in the post-test than those

who maintained it in the pre-test (50% less). In Figure 1.3, the panel

88

Effects of design patterns after course measures the difference between

ALT and PAT version in the post-test, and shows a significant increase

in correctness for the PAT version.

There is one outlier in the PRE-ALT group, who worked for about 90

minutes before submitting a large change for compilation. However,

the measured effect persists even if this outlier is omitted. The tenta-

tive interpretation is that DECORATOR is a pattern that benefits signif-

icantly those who take even a short course in it, and that such benefit

influences both the correctness of the solutions and the time used to

complete them.

Base levels

The size and complexity of the programs varied, and this can be seen in

the ”base level” (time used for the ALT version in the pre-test, correct-

ness at least 4 out of 5, as defined in Sections 1.3.6 and 1.3.7). Qualita-

tive analysis of the solutions showed that recursion and recursive data

structures created problems for a number of subjects. This affected the

Boolean Formulas and Graphics Library programs (longer time, lower

correctness), but is not a threat to validity because recursion is a central

feature of the COMPOSITE pattern that is present in these programs.

The Stock Ticker program (OBSERVER pattern) was the shortest and

simplest, and the base levels show a short time and high correctness

for the solutions. Again, this reflects the pattern itself, which is struc-

turally very simple.4 In this experiment the subjects had few problems

understanding and extending it, and the base level observations rein-

force the conclusions regarding this pattern.

1.6 Comparison with the original experiment

This experiment was originally designed to investigate whether it is

useful to utilize Design Patterns during program construction, even if

4. The subtle interaction effects which it is possible to encounter with multiple OB-

SERVERs and event-driven programming in general, become visible only in programs

of greater complexity.

89

the particular problem can be solved in simpler ways. The context was

program maintenance by developers other than the original ones, and

the experiment used pen and paper.

Our replication of the original experiment added the dimension of a

real programming environment, so we retained the original aim, while

adding an interest in the effects of the differences in execution of the

experiment. We therefore re-analyzed the data from the original exper-

iment using the same regression model, estimation method and soft-

ware as for our replication, thus making it easier to compare the two

experiments.

The program Communication Library had three work tasks in the orig-

inal experiment. The last two were quite similar and had similar hy-

potheses; in our replication they were combined to give a more sym-

metrical experimental design. When re-evaluating the data from the

original experiment, the completion times for the last two tasks of

this program were summed, and the correctness scores averaged and

rounded to the nearest integer to match the analysis model. In the orig-

inal experiment, so many subjects misunderstood Boolean Formulas

Task Two that it was omitted from the analysis. We likewise omitted it

from our re-evaluation.

1.6.1 Base level and variance

For the dependent variable time, the upper left panel of Figure 1.4

shows that the trends are similar, in that the same work tasks take a

long or short time to complete. However, the absolute values differ.

Those tasks that contained a lot of programming (Boolean Formulas

task 1, Graphics Library task 1) took significantly longer in the replica-

tion.

Our explanation is that this is mainly an effect of the switch to actual

programming; since all the details have to be correct, there is more

work to be done than simply sketching out a class on paper. The vari-

ances are also larger, and we attribute that to the same effect—Prechelt

has previously estimated the expected speed difference between fast

and slow engineers to be on the order of 4:1 (Prechelt, 2000), and we

90

expect both the programming environment and the varied background

of the subjects to contribute.

Another possible contributing factor is the fact that our subjects were

paid for participating, whereas in the original experiment, the subjects

were volunteers. We would expect this to cause a greater variance, be-

cause the volunteers would generally be more interested than a less

self-selecting sample. However, the presence or strength of this factor

is difficult to evaluate separately.

For the dependent variable correctness, seen in the upper left panel of

Figure 1.5, the situation is similar, though the correctness of the solu-

tions in our replication is often somewhat lower than in the original

experiment. One possible explanation is that the criteria for scoring

were not identical. For instance, it is possible to grade as “Correct”

a paper solution that does not actually compile due to a syntax error;

in our replication this situation would have given an “Almost correct”

score at best.

1.6.2 Elapsed time

The four lower panels of Figure 1.4 show that in most cases, the sign,

and to a lesser extent the size of the observed effects, are similar in

both the original and the replicated experiments. Since the replication

is fairly close, we concentrate the following discussion on the follow-

ing cases: a hypothesis exists, its estimated actual coefficient changes

sign and there is little or no overlap of the confidence limits. We first

note that there seem to be no systematic differences. As the replication

is fairly close, this is as expected, and improves our confidence in the

validity of the experiment.

For Stock Ticker/OBSERVER work task 1, the hypothesis (S2: −) is con-

tradicted in the original experiment and confirmed in the replication.

The expectation was that given knowledge of Design Patterns, sub-

jects would find it easier to implement the work task on the PAT ver-

sion, because the programming effort would be much smaller. This did

not happen in the original experiment, while the expectation was sup-

ported in our replication, leading to opposite conclusions regarding the

91

OBSERVER pattern.

In Communications Library/DECORATOR work task 1, there are con-

flicting expectations. The ALT version has a greater amount of localized

code and should be easier to understand, but new functionality has to

be added in several places and correctly sequenced, leading Prechelt

et al. to expect the subjects working on the PAT version to be faster,

even in the pre-test. In the original experiment, the first effect was the

strongest, leading to a strong confirmation of (C1: −). In the replication,

subjects working on the ALT version were marginally slower than those

working on the PAT version, leading to an inconclusive result. Simul-

taneously, correctness was significantly higher for the PAT version than

for the ALT version in the replication, and even more so in the original

experiment. In summary, the subjects in the replicated experiment had

more problems with DECORATOR before training than in the original

experiment. In the post-test there is no significant difference between

the two experiments.

1.6.3 Correctness

As with the dependent variable time, we see no large, systematic dif-

ferences between the original experiment and our replication in the es-

timated coefficients for the dependent variable correctness. For Com-

munications Library/DECORATOR work task 1, we observed a smaller

improvement in correctness going from the ALT version to the PAT ver-

sion of the program than in the original experiment. The explanation

lies in the base level correctness (ALT version), which is higher for the

replicated experiment, leaving less room for improvement.

Graphics Library/ABSTFACTORY recorded improvements in correct-

ness between the pre-test and post-test for ALT version programs. We

believe this to be caused by the fact that both the PAT and ALT ver-

sions of this program contained an ABSTFACTORY pattern as noted in

Table 1.1, and that the subjects benefited from the course in understand-

ing this pattern.

92

1.6.4 Summary

For OBSERVER, we did not find the negative effect that was observed in

the original experiment, while for VISITOR we had a very strong nega-

tive indication. For DECORATOR also we found fewer harmful effects,

while COMPOSITE / ABSTFACTORY turned out about the same.

The total and C++ experience of our subjects was roughly compara-

ble to those of the original experiment, but our subjects had less pat-

tern knowledge to start with. The materials, experimental design and

Design Patterns course were the same. The main differences were a

more heterogeneous group of subjects (multiple companies), and the

programming environment vs. pen and paper.

Having a detailed log of all compilations enabled better understanding

of what the subjects were doing while solving their tasks. In particular,

several cases were observed in which a subject worked on one solution,

discarded it and did something different, whereas in the final code, no

trace of the intermediate solution was present.

1.6.5 Lessons learned

Our suggested “lessons learned” are similar to those in the original ex-

periment. It is not always useful to use a pattern if a simpler design

will do the job; and if the pattern is a complex one like VISITOR, even

“proper” use can confuse more than it helps.

However, patterns that are more intuitive, such as OBSERVER or DEC-

ORATOR, will generally do little harm, and code based on them can

be readily extended even by developers who do not fully understand

them.

A developer needs an awareness, not just of Design Patterns or what-

ever other design method is in fashion, but also of good design princi-

ples in general. Good breadth in education and experience can make

up for lack of knowledge of specific patterns, but the opposite does not

follow. Educational institutions should avoid the temptation to concen-

trate too much on the current design fashion, whatever it might be.

93

1.7 Methodological results

During the course of this experiment we identified a number of issues

relating to the conduct of such experiments, which we will summarize

here:

1.7.1 Measurements

The subjects measured the total elapsed time for a task themselves, not-

ing it in a questionnaire. They could also add free-form comments at

the completion of every work task. Our logging system also measured

the elapsed time, and unobtrusively saved time-stamped copies of ev-

ery file compiled. After each task, all the subjects completed the ques-

tionnaire, grading the difficulty of the task, the helpfulness of any pat-

terns present, and their own use of the patterns.

The combination of both machine- and self-measured elapsed time,

together with the comments, enabled better verification of the actual

measurement. The fact that there were no significant discrepancies in-

creased our confidence that the times were measured correctly.

The free-form comments and the compilation logs were valuable in

both grading the correctness of the solutions, and in later qualitative

analysis.

1.7.2 Technical setup

Setting up a lab with 45-50 workstations is an expensive and laborious

task. We instead decided to use a Terminal ServerTM configuration, in

which each subject would bring his/her own laptop computer (the vast

majority of consultants now use them), connect to our network and

then work entirely inside the Terminal Server environment. We used

four servers with a total of six CPUs and 3GB of RAM. The servers ran

at 20-30% CPU load during the experiment. Logs were made of var-

ious performance parameters to verify that no major server problems

affected the experiment.

The subjects were assigned seating based on their group membership,

94

such that two subjects sitting next to each other never worked on the

same task.

On the morning of the first day, the subjects were assisted by Simula

Research Laboratory technical support staff to connect their laptop PCs

to our network. This operation took from a few to about 15 minutes

per subject, depending on their Windows configuration. There were

three staff members on hand to handle this task, and this proved barely

sufficient.

If the organization owning the laptop had a restrictive security policy,

this relatively simple reconfiguration became very difficult or impos-

sible to perform. We had 10 terminals ready to accommodate subjects

who for any reason could not use their own computer, and seven of

them were actually used. To avoid losing subjects it is essential to have

such a backup option ready. Switching in the middle of the experiment

should be avoided; in our case, if the laptop did not work satisfacto-

rily on our network within a maximum of 15 minutes, the subject was

given a terminal instead and the laptop was never used.

1.7.3 Programming environment

The environment was set up with a pre-installed editor/compiler, Web

browser, a viewer for PDF documents, and nothing else. Access to

other functions, files, etc., was removed or blocked. In this way we en-

sured that the subjects had equal working conditions, and also guarded

against mishaps with incompatible header files and other setup-related

problems. It should be noted that such problems are not easily over-

come in the C++ world, where even “standard” headers are incompat-

ible among major compiler manufacturers.

1.7.4 Big-bang experiments

This experiment had a design that forced all the subjects to be present

at a certain place, and at the same time, for several days. Finding par-

ticipants is quite difficult, because people have to be available at exactly

the given time, which may be difficult to schedule for their employers.

95

In addition, if anything happens to prevent attendance, the subject is

lost: there is no second chance.

An alternative model is to perform the experiment in batches, over an

extended period of time. This is more flexible and robust, and also al-

lows the experiment to be extended with more subjects if needed. How-

ever, it precludes experimental designs that require the subjects to have

some common activity, such as the patterns course in this experiment.

1.7.5 Place of experiment

Due to the design of the experiment, our subjects had to come to Sim-

ula Research Laboratory, both for the course and to do the exercises.

An alternative model is to use a web-based tool (Arisholm et al., 2002b)

to deliver the programming tasks, questionnaires and tools directly to

the subjects, and have them perform their tasks in their own office en-

vironment.

The experimenters must in any case be in attendance on the premises

to handle any problems.The major methodological challenge in this

model is to keep control of the experiment; on the technical side it is

not trivial to make sure that all the subjects’ computers have equivalent

and properly working environments. It is also more difficult to install

and use various monitoring tools.

1.7.6 Recruitment and subject selection

The intended population for this experiment were programmers who

make general-purpose data processing software. A number of consul-

tancy companies were asked to participate in the experiment. They

were told the general outline, consisting of a one-day patterns course

between two half days of exercises. The subjects were paid for the ex-

ercise time, and received the course free.

Both the companies and individual subjects were told that they were

participating in an experiment, but were not told about any of the goals,

hypotheses or expectations, nor what was measured or how.

96

The participation was formalized by contracts signed by each company

and Simula Research Laboratory. Each company was also allowed to

charge a limited number of management/overhead hours. Our experi-

ence is that allowing reasonable overhead costs increases the likelihood

of participation.

The experimental design required all participants to be present at the

same time, for two consecutive days. This made it much more difficult

to get a sufficient number than for previous experiments that could be

done on each company’s premises, one company at a time.

1.7.7 Subject background mapping

The background data was collected using an on-line questionnaire

prior to the experiment (Arisholm et al., 2002a). The questionnaire

used was identical to that used in the original experiment. However,

instead of the subjective, manual process that was used to allocate sub-

jects to group in the original experiment, the answers were transferred

to a database, and processed by a scoring program. A score was calcu-

lated in each of the following three categories:

1. C++ programming experience and volume, measured in number

of programming years and number of lines written;

2. Knowledge of design methods, measured by number of methods

known and number of practical uses of each method;

3. Knowledge of patterns, measured by number of patterns known,

and number of practical applications of each pattern.

Finally, the scores were combined with relative weights of 1
6 , 1

6 and 2
3 ,

reflecting the relative priorities of the categories.

Using a scoring program made the relative weights of the different fac-

tors explicit and visible. However, no automated process can fully ad-

dress all details of a subjects’ qualifications, especially free-form com-

ments that clarify the purely quantitative aspects. Manual inspection

and sometimes adjustment is required, for example if a subject filled in

“5” as the number of years of education, but stated that two of them

were in high school.

97

1.7.8 Prequalification and blocking

Having too large a spread of education, experience and knowledge in

the subjects can undermine the use of standard quantitative statistics,

because it introduces individual differences that may mask the trait we

seek to measure. As experienced in this experiment, it is difficult to

predict the performance of subjects from indirect measures such as ed-

ucation or work experience, and balancing according to such criteria

may therefore not be enough to ensure an actual balance with respect

to the experimental tasks.

This can be mitigated by using nontrivial familiarization and calibra-

tion tasks that are common to all the subjects. It might also be necessary

to exclude some subjects based on a pre-test, if it turns out that they are

not qualified to take part. The sample is then no longer random, and

great care must be taken to ensure that the subjects are (and remain!) a

representative sample of the population that is being studied. We note

that simply relying on participating organizations to select a sample (by

deciding who to send) may not be enough.

One consequence is that the process of selecting subjects should be

started several months in advance of the experiment, to allow time

for sufficient iterations. “Big-bang” experiments are especially sensi-

tive, because there is no second chance. As discussed in Section 1.4.3,

this experiment was robust with respect to (lack of) group balancing.

However, mapping the subjects’ background is still important to help

ensure a representative sample of the targeted population, and thereby

improve the experiments’ external validity.

1.7.9 Details matter

In pen and paper experiments, subjects do not have to write exactly

correct syntax. Once a compiler is introduced this is no longer true, and

technicalities that are viewed by the experimenter as irrelevant may

consume significant amounts of time.

In the Boolean Formulas program, several subjects knew neither the

truth table nor the C++ syntax for the XOR operator, and consequently

98

spent time on this.

In the Graphics Library program, one subject had never seen a pen plot-

ter and consequently did not understand what to do. The experimenter

therefore has to take extreme care to fully specify, document or avoid

such details to improve data correctness.

The experimental design used here seeks to mitigate the consequences

of such “details”. All the three problems cited contributed to increase

the variability of the data, or to data loss. By making multiple measure-

ments on both PAT and ALT programs and tasks for each subject, the

overall impact is minimised and the chance of systematic bias in the

results lessened.

1.8 Threats to validity

An experiment is by definition an artificial situation. In this Section we

address threats to both internal and external validity of the observed

results. The discussion is in part based on the guidelines recently set

forth by Kitchenham (Kitchenham et al., 2001).

1.8.1 Threats to internal validity

Internal validity is the degree to which the observed effects depend

only on the intended experimental variables. In this experiment, the

main threats are from inter-individual, and inter-group, differences be-

tween subjects that mask the intended effects. The purely technical

proficiency of the subjects (as distinct from their ability to understand

program structures and patterns) is also a factor.

Group balancing

We have already described how the groups were balanced with respect

to pattern knowledge, general programming experience and C++ ex-

perience. Recent experience with the programming environment (Mi-

crosoft Visual Studio 6.0) and Windows itself was checked and also

found to be reasonably well distributed.

99

The regression model and estimation method chosen are robust with

regard to group differences, since each subject is its own control: all the

subjects perform the work tasks of all the programs (half ALT and half

PAT versions).

As it turned out (see 1.4.3), the regression model revealed no signifi-

cant effect of the pre-qualification score, so a fully random assignment

would probably have been just as good. In an experimental design

where each subject receives either treatment A or B, group balancing is

much more important. However, balancing can never be relied on com-

pletely, and is susceptible to problems such as participants not turning

up. In such cases, some kind of calibration task is needed to deter-

mine actual performance levels, and should be included in the statisti-

cal model (Arisholm et al., 2001).

Technical factors

The programs used for the tasks were originally designed with a mini-

mal user interface that consisted of a declaration of a Window class with

a few self-explanatory methods (drawtext, drawline, erase, resize).

In the present experiment, that class was implemented so that the pro-

grams actually ran and could show a window; the well-known stream

mechanism for creating console text output cout << "Hello\n"; was

also added.

The windows so constructed remained active even if the program was

stopped in a debugger, so their output was visible. To avoid distrac-

tions, the implementation was carefully hidden. No knowledge of Win-

dows, Microsoft Foundation Classes, Java or any other specific system

was assumed or needed.

Logs were kept of server load parameters to determine if overloads or

faults interfered somewhat with the experiment. Moreover, all compi-

lations were inspected, and subjects were also encouraged to submit

(as free text) comments about any technical obstacles they might have

encountered.

100

C++ proficiency

All the subjects performed an initial, familiarization task in order to try

out the programming environment and the user interface.

Individual differences in C++ experience and capabilities interfered

with the time spent on the programming. C++ is a relatively complex

language with fine syntactical and semantic distinctions. Developers

who are not proficient can spend significant time on details.

To lessen this threat, all compilations were evaluated, and the editing

time for compilations that were purely about syntactical problems was

subtracted from the total time for each subtask. The procedure is de-

scribed in Section 1.4.1 above. Comparisons of estimates of the regres-

sion model coefficients and their confidence intervals showed that the

corrections added no systematic bias.

However, neither did they shrink the confidence intervals much. Cor-

rections of this kind will always depend to some extent on the subjec-

tive judgement of those doing the grading. Also, since copies of the

source files were made only when compilations were performed, any

subjects who spent time on syntax without making compilations can-

not be assigned corrections. For these reasons the corrections were not

used in the final analysis.

Another factor, likewise determined by inspection of the solutions, is

that several subjects implemented one solution to a large extent, only

to abandon it and start again in a different way. This also increased the

individual variations.

1.8.2 Threats to external validity

External validity is the degree to which the results can be generalized

and transferred to other situations. Several differences between the ex-

perimental situation and real-world maintenance must be considered.

101

Maintenance by the original designers

In our experiment the maintainers were different from the original pro-

grammers, so the experiment is not applicable to maintenance by the

original designers. Original designers would be expected to remember

not only the actual design, but also much of the motivation for it.

The use of Design Patterns may not have much impact in that case; in

the current context, we are not interested in improvements resulting

simply from the fact that a design with patterns fits the problem better

than some alternative design.

Design Pattern experience

Some maintainers may have more experience with Design Patterns

than did our subjects. In that case, we would expect the beneficial ef-

fects of patterns to be greater. Thus, the experiment is conservative in

estimating benefits of using Design Patterns.

This expectation is motivated by the significant improvements (with

one exception) in maintenance speed after the patterns course. The ex-

ceptions can largely be explained by the course being too short, so that

subjects attempted to use a pattern that they did not fully understand.

Deeper knowledge will probably not make the situation worse!

Program size, task size and tools

Real-world programs are much larger than those used in the experi-

ment. With a restricted time and money budget, this is a limitation that

is difficult to overcome. In addition, real-world programs are some-

times less well documented, and changes may be larger and involve

more than one pattern. The effects of such differences are difficult to

predict on a general basis. There are undoubtedly interaction effects

that can occur between patterns, but would not be visible in such an

experiment.

Judging by the qualitative findings, we would expect the results to be

generally transferable. Good or bad understanding of a structural pat-

102

tern implies similarly good or bad understanding of the structure of

programs employing it, and any benefits or problems should therefore

be applicable. As large changes are often made up of several small ones,

program size will be a scaling factor, but will probably not alter the di-

rection of the effect. Relatively small change tasks, of the same order of

magnitude as those in the experiment, do actually occur in industrial

settings (Arisholm, 2001).

Maintainers may be more familiar with the language, development

tools, etc., than were some of our subjects. However, given the

widespread use of consultants, and relatively high turnover of develop-

ers in general, the experiment may reflect the real world in this respect

more accurately than one might desire.

Realism of Tasks

In the experiment, most work tasks consisted of adding features that

corresponded in some way to features or functions already in the code.

The subjects could therefore use parts of the existing code as templates

for their solutions. In an industrial context this would not necessarily

be true.

However, most software does not fundamentally change its nature dur-

ing what is normally termed “maintenance”. Most features added

or modified during maintenance correspond to something already

present; for instance, a new layout for an existing screen, the addition of

a field, or the addition of another web page to an existing structure. We

therefore do not consider this aspect of the experiment to be a signif-

icant threat, though it excludes “maintenance” such as porting a pro-

gram to a new platform or rewriting it for a fundamentally different

kind of database.

Domain Knowledge

Each program came from a different domain: Graphics, Formula ma-

nipulation, GUI/Presentation and Communication. The Design Pat-

terns used (ABSTFACTORY, COMPOSITE, VISITOR, OBSERVER and DEC-

103

ORATOR) are not domain-specific. Lack of domain knowledge was

therefore more a threat to internal than external validity.

Inspection of the code logs and comments made by the subjects re-

vealed a few cases of domain unfamiliarity: one subject did not know

what a pen plotter was, and several subjects had some problems with

Boolean arithmetic (see Section 1.7.9). While this increased the un-

certainty of the estimates of the relevant coefficients of the regression

model, we do not consider it a threat to the external validity of the re-

sults concerning the patterns themselves.

Experimental stress

Finally, our subjects were working under artificial, experimental condi-

tions. The closest analogy is an exam. Even if one were always sitting

beside someone working on a totally different task, watching a relaxed

neighbour while one struggles is quite stressful, on top of the knowl-

edge that one is being measured in visible, and possibly invisible, ways.

Another difference is that it is possible to walk away from a nonwork-

ing solution, as actually happened with several subjects. In industry

that option is simply unavailable. When it happens, projects tend to

become highly visible failures.

Working under stressful and tight deadlines is not unusual in indus-

try (Yourdon, 1999). The additional stress from the experimental situa-

tion is expected to add to the size of the individual differences, because

some individuals handle the situation better than others. Given the

design of the experiment, we do not expect the results to be systemati-

cally skewed by this, so they should still be transferable to an industrial

context

1.9 Conclusions

We replicated the experiment performed by Prechelt et al. (Prechelt

et al., 2001), which investigated the question whether it is useful (with

respect to maintenance) to design programs using Design Patterns,

104

even if the actual design problem is simpler than that solved by the

pattern. Our replication sought to increase experimental realism by us-

ing a real programming environment instead of pen and paper, and by

using paid professionals from multiple consultancy companies as sub-

jects.

Logging tools were used to collect copies of the evolving solutions

while the subjects worked. Together with free-form comments made

by the subjects, this formed the basis for a qualitative evaluation of the

results. In addition, a regression-based approach using Generalized Es-

timating Equations was adopted for the quantitative statistics. This ap-

proach takes into account the correlations between multiple work tasks

performed by each subject.

We found that each Design Pattern tested has its own nature, so that it

is not valid to characterize Design Patterns as useful or harmful in gen-

eral, at least in the context (maintenance by other programmers than

the original developers) addressed here.

The OBSERVER and DECORATOR patterns were generally understood

even by subjects with little or no previous patterns knowledge, and

after a short course the value of the patterns, in terms of both develop-

ment time and, to some extent, correctness of the solutions, increased.

The COMPOSITE pattern, with its reliance on recursion, caused some

problems. It may be that recursion is no longer in general use in this

kind of software, and a possible cause is the availability of predefined

container classes in most languages. The VISITOR pattern, which has a

fairly complicated structure, extracted a high cost in development time

and poor correctness. Many subjects actually ignored it even when pre-

sented with template solutions that used it (and were documented as

such).

Our results differ somewhat from those found by Prechelt et al., espe-

cially in the case of VISITOR and OBSERVER. While they found VISITOR

to be without significant harmful effects, few of our subjects achieved

a good solution with it, even after the course. By contrast, we observed

no significant harm done by using the OBSERVER pattern.

Having not only the final solution, but also the intermediate steps (pro-

105

vided by the logging mechanism), made possible a more extensive

quantitative analysis. Using a real programming environment was one

prerequisite for such logging. The realism was also increased by intro-

ducing the need to compile and test the solutions.

We also demonstrated that it is possible to perform experiments on this

scale while using a realistic environment and tools, and professional,

paid subjects. It is possible to use Windows Terminal Server to provide

a pre-configured environment without having to set up each worksta-

tion individually. This can be combined with Web-based tools to de-

liver content and questionnaires to subjects, thereby enabling experi-

ments with a larger number of subjects.

Paying subjects to participate, and allowing some overhead costs, make

it possible to get professional developers as subjects. If the experimen-

tal design allows it, it is also possible for them to participate while being

in their normal work environment. In future work, these factors can be

combined to increase the realism of the experiments and address some

of the traditional threats to external validity.

Only four Design Patterns were evaluated in the original experiment

and this replication. One area for future work is to evaluate other De-

sign Patterns in widespread use from a similar standpoint: what effect

would their use have on future maintenance, for programmers with

and without relevant Design Pattern knowledge. Another need is to

evaluate Design Patterns in larger contexts. The programming tasks do

not necessarily have to be much larger, but the software of which they

are a part should be of a more realistic size.

106

•

•

•

•
•

• •

•

•
• •

• •
•
•

Base level

1 2 1 2 1 21 2
BO CO GRST

0

50

100

150

av
er

ag
e

tim
e

(m
in

ut
es

)

• •

•
•

•

• •

•
•

•
•

•
•

•
•

Effects of design patterns before course

1 2 1 2 1 21 2
BO CO GRST

-2

-1

0

1

2

co
ef

fic
ie

nt
 v

al
ue

s

-75

-50

0

100

400

re
la

tiv
e

ch
an

ge
 (

%
)B1 B4

C1

C3a G1

G3a

S1

• • •
•
•

• •
•
•

•

•

•

•

•
•

Course effects on alternate programs

1 2 1 2 1 21 2
BO CO GRST

-2

-1

0

1

2

co
ef

fic
ie

nt
 v

al
ue

s

-75

-50

0

100

400

re
la

tiv
e

ch
an

ge
 (

%
)

B2a G2a G4a

• • •

• •

•
• • •

• •
•

•

•

•

Effects of design patterns after course

1 2 1 2 1 21 2
BO CO GRST

-2

-1

0

1

2

co
ef

fic
ie

nt
 v

al
ue

s

-75

-50

0

100

400

re
la

tiv
e

ch
an

ge
 (

%
)

B3

B6

C2

C3b

G3b

S2 S3

• •

• •

•
•
•

•

•
•
••

• •
•

Course effects on design pattern programs

1 2 1 2 1 21 2
BO CO GRST

-2

-1

0

1

2

co
ef

fic
ie

nt
 v

al
ue

s

-75

-50

0

100

400

re
la

tiv
e

ch
an

ge
 (

%
)

B2b G2b G4b

Analysis of time, replicated and original experiment

Figure 1.4: Completion times for all programs and tasks

Same format as Figure 1.2. For each coefficient, the left value is from the

current replication, and the right value is from the original experiment,

using the same analysis model and estimation method.

107

•

•
• •

•

• •

•
•

• •

• •
•
•

Base level

1 2 1 2 1 21 2
BO CO GRST

0

1

2

3

4

5

A
ve

ra
ge

 s
co

re

•
• •

•

•

•

•

•

• • •
•
•

•
•

Effects of design patterns before course

1 2 1 2 1 21 2
BO CO GRST

-2

-1

0

1

2

C
ha

ng
e

in
 s

co
re

B5 C4a

•

• •
• •

•

•

•

•

•
••

•
• •

Course effects on alternate programs

1 2 1 2 1 21 2
BO CO GRST

-2

-1

0

1

2
C

ha
ng

e
in

 s
co

re

• •
•

•

•

•
•

•

•

•

••
• •

•

Effects of design patterns after course

1 2 1 2 1 21 2
BO CO GRST

-2

-1

0

1

2

C
ha

ng
e

in
 s

co
re

C4b

• • •
• • •

•

•
•

• •

•
• • •

Course effects on design pattern programs

1 2 1 2 1 21 2
BO CO GRST

-2

-1

0

1

2

C
ha

ng
e

in
 s

co
re

Analysis of correctness, replicated and original experiment

Figure 1.5: Correctness effects for all programs and tasks

Same format as Figure 1.3

108

Bibliography for paper 1

Alexander, C.: 1978, A Pattern Language: Towns, Buildings, Construc-

tion. New York: Oxford University Press Inc, USA.

Alexander, C.: 1987, The Timeless Way of Building. New York: Oxford

University Press Inc, USA.

Arisholm, E.: 2001, ‘Empirical Assessment of Changeability in Object-

Oriented Software’. Phd, University of Oslo.

Arisholm, E., D. Sjøberg, G. J. Carelius, and Y. Lindsjørn: 2002a, ‘SESE

an Experiment Support Environment for Evaluating Software Engi-

neering Technologies’. In: NWPER2002 (Tenth Nordic Workshop

on Programming and Software Development Tools and Techniques),.

Copenhagen, Denmark, pp. 81–98.

Arisholm, E., D. Sjøberg, G. J. Carelius, and Y. Lindsjørn: 2002b, ‘A

Web-based Support Environment for Software Engineering Experi-

ments’. Nordic Journal of Computing.

Arisholm, E., D. I. K. Sjøberg, and M. Jørgensen: 2001, ‘Assessing the

Changeability of two Object-Oriented Design Alternatives - a Con-

trolled Experiment’. Empirical Software Engineering 6, 231–277.

Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal:

1996, Pattern-Oriented Software Architecture. Chichester: Wiley.

Diggle, P., K. Liang, and S. Zeger: 1994, The analysis of Longitudinal

Data. Oxford: Oxford University Press.

Efron, B. and R. J. Tibshirani: 1993, An introduction to the bootstrap,

Monographs on Statistics and Applied Probability. London: Chap-

man & Hall.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides: 1995, Design Pat-

terns: Elements of reusable object-oriented software. Addison-

Wesley, Reading, MA, 1995.

Kitchenham, B. A., S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.

Hoaglin, K. El-Emam, and J. Rosenberg: 2001, ‘Preliminary guide-

lines for empirical research in software engineering’. IEEE Transac-

tions on Software Engineering.

Liang, K. and S. Zeger: 1986, ‘Longitudinal Data Analysis using Gener-

alized Linear Models’. Biometrika 73, 13–22.

109

Lindsay, R. and A. Ehrenberg: 1993, ‘The Design of Replicated Studies’.

The American Statistician 47(3), 217–228.

McCullagh, P. and J. Nelder: 1989, Generalized linear models. New

York: Chapman and Hall.

Prechelt, L.: 2000, ‘An empirical study of working speed differences

between software engineers for various kinds of task’. Submitted to

IEEE Transactions on Software Engineering, to be revised.

Prechelt, L., B. Unger, W. F. Tichy, P. Brössler, and L. G. Votta.: 2001, ‘A

Controlled Experiment in Maintenance Comparing Design Patterns

to Simpler Solutions.’. IEEE Transactions on Software Engineering

27(12), 1134–1144.

Sjøberg, D., B. Anda, E. Arisholm, T. Dybå, M. Jørgensen, A. Kara-

hasanovic, E. Koren, and M. Vokác: 2002, ‘Conducting Realistic Ex-

periments in Software Engineering’. In: ISESE2002 (First Interna-

tional Symposium on Empirical Software Engineering). Nara, Japan,

pp. 17–26, IEEE Computer Society.

Smith, D., W. Robertson, and P. Diggle: 1996, ‘Object-Oriented Software

for the Analysis of Longitudinal Data in S’. Technical Report Tech-

nical Report MA96/192, Department of Mathematics and Statistics,

University of Lancaster.

Yourdon, E.: 1999, Death March. Prentice Hall PTR.

110

Paper 2

Using a reference application with design patterns

to produce industrial software

This paper was presented at PROFES 2004: 5th International Confer-

ence on Product Focused Software Process Improvement April 5–8,

2004 Keihanna-Plaza, Kansai Science City, Japan.

It appeared in the Proceedings: Bomarius, F., Iida, H. (Eds.), Product

Focused Software Process Improvement. Vol. 3009 of Lecture Notes in

Computer Science. Springer-Verlag Heidelberg, 2004.

111

112

Using a reference application with Design Patterns to produce

Industrial Software

Marek Vokáč

Simula Research Laboratory, NO-1325 Lysaker, Norway

Oluf Jensen

EDB Business Consulting

Abstract

System architectures are described in abstract terms, often using Design

Patterns. Actual reuse based on such descriptions requires that each devel-

opment project derive a concrete architecture from the chosen Patterns, and

then implement it in code.

This paper describes a case study of an industrial development project that

adopted a reference application as a starting point, in order to avoid the need

to design a complete architecture. Reference applications are usually made by

platform or component vendors. Such applications are used to provide exe-

cutable examples of best practices, for a particular platform, component set,

or other technology. In this case study, the Pet Store application for the J2EE

platform was chosen. Pet Store is documented by Design Patterns and is also

available as source code. The development consisted of replacing the appli-

cation logic, while keeping the architecture intact. The project was thus trans-

formed from an ab initio development project into a major reuse/modification

project. This development project was part of a software process improvement

effort looking at processes for and with reuse.

Our results indicate that this approach works well, provided that the func-

tional and non-functional requirements of the project match those of the ref-

erence application. The development time was shortened by approximately

one third relative to the original estimate, and a well-designed application

was produced despite lack of experience with the platform and n-layer archi-

tectures. Surprisingly, the production deployment to a different application

server was still problematic, even though the original reference application

was available as a sample for that server.

Key words: design patterns, reference application, Java Pet Store, in-

dustrial code, case study

113

2.1 Introduction

Software Design Patterns (Gamma et al., 1995; Buschmann et al., 1996;

Rising, 1998) document solutions to well-known and defined problems,

and thus provide an opportunity for architectural reuse. However, the

structures and behaviour specified by a Pattern are at an abstract level

and have to be translated into a concrete architecture, and then imple-

mented in code, in each development project.

There exist other forms of architectural guidelines, such as reference

architectures. These vary from very high-level and methodology-

oriented approaches that describe organisational processes and general

criteria for choosing between technologies, such as (Bernus and Nemes,

1996), to the more concrete, technological recommendations described

in (Hallsteinsen and Swane, 2002), where possible components of a mo-

bile application are described using prose and UML diagrams. Still, the

burden of correctly designing and implementing the concrete architec-

ture lies with the developers of each particular project.

By contrast, small pieces of sample code tend to illustrate a low-level

solution to an isolated problem, and are more useful as examples than

for direct reuse. While they often assume a particular architectural

model, they do not explicitly specify or provide it.

This paper investigates a different approach: development by reuse

and adaptation of a publicly available reference application. The start-

ing point is a complete, working application that implements acknowl-

edged best practices, with a concrete architecture documented by refer-

ence to well-known Design Patterns.

In our case study, the development was based on the Pet Store refer-

ence application available for the J2EE platform (Sun Microsystems,

Inc, 2003). The development was performed by replacing the user in-

terface, functionality and database structure, while leaving the archi-

tecture and application structure intact.

The decision to attempt large-scale reuse was partly motivated by the

wish to quickly create a high quality Web application, in spite of a lack

of experience with the J2EE platform and multi-layered architectures.

114

It was also motivated by an ongoing software process improvement

project, in which the company cooperated with several research insti-

tutions. This project defined a refinement process investigating a de-

velopment process for and with reuse.

This paper contains the following sections: Section 2.2 reviews reuse

concepts and locates the present contribution in context. Section 2.3

presents the research methods, and Section 2.4 the development project

that was studied. Results are described in Section 2.5, and Section 2.6

concludes and describes possible future work.

2.2 Background and concepts

A major challenge in developing a modern multi-layer, web-oriented

application is to design an architecture that supports the required func-

tionality on the specified platform, and to translate that architecture

into running code. In this section, we look at some popular forms of

software reuse, and define the salient concepts used in the present pa-

per. These concepts form the basis for the present case study and the

project that was investigated.

2.2.1 Forms of reuse

The tradition of software reuse dates back to 1968 (McIlroy, 1968) and

earlier. Over time, several distinct modes of reuse have been described,

as by Thomas et al. (1995). Their classification divided reuse into three

kinds: verbatim reuse, where a component is not modified; reuse with

slight modification; and reuse with extensive modification. In addi-

tion, we must take into account the kinds of artefact that are being

reused.

At the architectural level, the artefacts available for reuse are abstract.

Design Patterns (Sun Microsystems, Inc, 2002), books on Best Practices

(Kassem, 2000; Alur et al., 2001; Microsoft, Inc, 2003a), UML models

(Hallsteinsen and Swane, 2002) and more general reference architec-

115

tures (Ciancarini et al., 1998) must all be translated into concrete archi-

tectures suitable to the project at hand.

At a more concrete level, we find libraries and frameworks such as

STRUTS (Apache Jakarta Project, 2003). Frameworks are used by plug-

ging new components into them, to leverage existing functions, and

to a certain extent, they dictate or encourage a particular architectural

direction.

A concept that has recently received some attention is the product fam-

ily, as described in van der Linden and Muller (1995); van der Linden

(2002). When individual applications cover overlapping sets of require-

ments, there is a potential for a product family with shared modules.

This often results in frameworks, libraries or other constructs meant to

foster reuse between the applications.

In his seminal paper, Brooks (1987) argued that the essence of software

lies in its complexity, conformity, changeability and invisibility; most

of the improvements in the field of programming have addressed acci-

dental factors, such as high-level languages and system response times

(and thereby development cycle speeds). In the same way, plugging

components into a framework or reusing sample code snippets may not

solve the difficult problem of designing an architecture that conforms

to a complex combination of functional, non-functional and platform

requirements, while providing reasonable flexibility for future devel-

opment. The task becomes especially difficult when time constraints

tempt the project developers to formulate simple solutions to immedi-

ate problems.

2.2.2 Reference applications

Our work is based on the concept of a reference application. Such ap-

plications are made available by platform (Sun Microsystems, Inc, 2003;

Microsoft, Inc, 2003b,c) or component (Rational, Inc, 2003; Infragistics,

2003) vendors for public use. They share a number of defining features:

they are complete, running applications; full source code can be down-

loaded and dissected; they implement current best practices in the area

they are meant to illustrate; and they are very well documented.

116

We are particularly interested in the fact that a reference application is

executable, and provides full source code in addition to architectural

descriptions. In doing so, it bridges the gap between abstract prescrip-

tions for ”good” architecture, and the mass of details that must be con-

sidered in any final implementation. This is one of the more difficult

parts of the design process, and a reference application provides a fully

implemented answer-within the requirements set by its authors.

By basing the development on Sun’s Pet Store reference application,

the project became somewhat similar to a product family project. How-

ever, the ”original” application was not an in-house product but instead

a publicly available reference application. The development work be-

longs to the ”reuse with extensive modification” kind at the code level,

but ”reuse with slight modification” at the application and architectural

levels.

2.2.3 Patterns versus code

The relationship between the abstract and fairly simple description pro-

vided by a Design Pattern and the complex structure that may arise

from its implementation can be illustrated by looking at two central

patterns in the Pet Store reference application.

One of the most central Patterns is the Model-View-Controller (Sun Mi-

crosystems, Inc, 2002), which seemingly consists of three components.

However, as implemented in Pet Store, the Model part consists of En-

terprise JavaBean objects that access the database and process data, the

role of Controller is performed by a set of objects that handle incoming

requests, and the View is generated from screen templates combined

with dynamic data.

In this way, what is conceptually a fairly simple pattern gives rise to

a large number of objects (4+ for Model, 7 for View, 7 for Controller)

for a single Use Case. The architecture provides considerable flexibility

for screen and interaction design, and separates the business and data

access logic from the presentation. However, correctly deriving and

implementing such a design ab initio is not trivial.

117

At the opposite end from the presentation layer, we find the database.

This component is often specified by the customer, because choosing

the company DBMS tends to be a strategic, high-level decision.

There are several versions of the SQL standard, and each vendor has

specific additions, extensions and limitations. It is therefore often

necessary to make changes to applications when switching from one

database to another. For instance, the syntax and rules for OUTER JOIN

varies, and choosing the correct cursor type may have critical impact on

performance. If SQL statements are spread throughout the code, this

becomes a more difficult task.

The Data Access Object pattern specifies that one should make an object

that encapsulates access to a particular resource, while hiding the actual

implementation of the storage mechanism. This is a way of partially

achieving “persistence transparency” as defined in ISO (1998). In the

general case, this can be a large task, but implementing access objects

for particular classes is more tedious than difficult.

2.3 Research methods

Our research design is a single case study with one study unit—the

development project (Yin, 2003). The study was initiated after the

development project was mostly completed, and was therefore con-

ducted retrospectively. The research was performed as part of the Soft-

ware Process Improvement through Knowledge Engineering (SPIKE)

project, a research/industry collaboration partly funded by the Nor-

wegian research Council.

Data was collected from project documents and logs, including the

source code and UML designs. A full-day post-mortem seminar where

all the developers participated was conducted. In addition, individ-

ual developers and representatives of the customer were contacted as

needed to collect and verify information.

One of the authors (O. J.) served as development project manager and

contributed first-hand experience.

118

2.4 The studied Development project

The Norwegian public sector actively attempts to provide 24-hour ser-

vice for its citizens by using the Internet. The development of publicly

accessible portals makes it possible for anyone to obtain certain ser-

vices, which would otherwise only be available during normal working

hours, at any time. Examples include Inland Revenue services (includ-

ing tax returns), work and employment services, Social Benefit services

and Municipal services.

The purpose of this project was to develop one such service, which

makes it possible for the public to apply for a driver’s license over the

Internet, and which implements a secure and automated application

process:

• The information received from the applicant is checked for cor-

rectness ” The application is checked against the rules and regu-

lations governing driver’s license applications.

• Once the application for a driver’s license is accepted, it becomes

available to a public servant employed by the Road Authority,

who is then responsible for processing the application.

• The applicant is automatically given a coded reference number

by e-mail. This makes it possible for her to check the status of her

application at any time.

• Once the application has been processed and accepted, the appli-

cant may then use her reference number to select a date for her

driver’s license test.

The inception phase of the project produced a Requirements report con-

taining specifications on several levels: Background and Purpose of

the application; Terminology: methods and tools; a Business Process

Model description; a Use Case Model description; a High level Busi-

ness Class skeleton; sketches of User Dialog and Forms (HTML), and

Database Models. This report also ensured that the customer’s basic re-

quirements were well documented. A short description of two central

Use Cases follows:

119

USE CASE Registration of license application

The following information is registered:

• Personal information: First name, Last name, social security

number, home address and e-mail address

• Applying for: First time applicant, additional vehicle classes

• What vehicle class

• Health information

The submitted information is checked against public registers and ap-

plicable regulations before it is accepted and stored as a driver’s license

application.

USE CASE Application status

Any applicant can look up her own application to view its status. The

applicant must use the reference number she received via e-mail when

the application was accepted.

2.4.1 The Pet Store reference application

The Pet Store reference application is presented in the book “Designing

Enterprise Applications with the J2EE Platform” by Singh et al. (2002).

It conforms to our general definition of a reference application:

Its goal has been to introduce enterprise developers to the

concepts and technology used in designing applications for

the J2EE platform, and to give practical examples of a typi-

cal enterprise application.

Furthermore, Pet Store is an example of a particular kind of J2EE appli-

cation:

The Pet Store application is a typical e-commerce site. The

customer selects items from a catalogue, places them in a

shopping cart, and, when ready, purchases the shopping

cart contents. Prior to a purchase, the sample application

displays the order: the selected items, quantity and price

120

for each item, and the total cost. The customer can revise or

update the order. To complete the purchase, the customer

provides a shipping address and a credit card number.

Pet Store implements a number of hierarchically ordered Design Pat-

terns. For instance, the MVC architectural pattern is implemented us-

ing Front Controller and Composite View, and database access in the

Model part is performed by objects conforming to the Data Access Ob-

ject pattern. This illustrates which tiers the application uses, and how

to distribute the functionality across the tiers.

Sun’s documentation (Sun Microsystems, Inc, 2003) consists of a high-

level architectural overview, followed by a description of the relevant

patterns, with references to actual classes and objects in the Pet Store

application.

This provides both a pattern-based description and a working imple-

mentation with all the details filled in. The application is executable

(provided one sets up a database server), and can be traced/debugged

to find the actual order of execution.

The Pet Store reference application has been the subject of some de-

bate in various Web forums, especially following its use in a bench-

mark to compare the J2EE and .NET platforms (Almaer, 2002; Öberg,

2003; Ditzel, 2003). It is also referred to in articles such as (Reimer and

Srinivasan, 2003), on analyzing the usage of exceptions in large Java

systems, and it is used in university curricula, e.g. (Ngu, 2003). It is

therefore relatively well known among Java/J2EE practitioners.

2.4.2 Development methods

In addition to simply developing a new application for a customer, the

company also wished to improve its software development process. To

achieve this, the software process improvement project was established

in collaboration with research institutions. One of the goals was to find

and establish a refinement process, processes and methods for and with

reuse.

The implementation of processes for reuse implies that any future

121

development project would have access to a “toolbox” of reusable

elements, such as model elements, components or design patterns.

The implementation of processes with reuse implies that development

projects have knowledge of, and make use of this toolbox of reusable

elements. In an example of successful reuse at Matra Cap Systemes

(Henry and Faller, 1995), the process was jump-started by focusing on

projects that could produce short-term gains while at the same time lay-

ing the foundation for more long-term reuse. The same approach was

adopted here, by using the Driver’s License project as the starting point

for an improvement process. A crucial process was that of choosing a

reuse strategy for the development project.

Key factors in the evaluation of reuse strategies were that the develop-

ers had relatively little experience with the J2EE platform and multi-

level architectures. They therefore wished to find a form of reuse that

did not require the design and full implementation of a complex archi-

tecture from abstract descriptions.

Given these considerations, and with reference to the various forms of

reuse outlined in Section 2.2.1, the project chose to look closely at Sun’s

Pet Store reference application. This revealed that Pet Store’s function-

ality had a sufficient level of similarity to the new application, as de-

tailed in the next two sections.

2.4.3 Functional requirements matching

The refinement process suggests looking for matching functional re-

quirements. To the development team, the functional similarities be-

tween the two applications were clear, as illustrated in the following

table:

The database structure used in Pet Store did not match the legacy

database that the Driver’s License application was to use. It was ex-

pected that the Data Access Object pattern used in Pet Store would

shield the rest of the application from the necessary modifications.

122

Driver’s License Pet Store

The applicant selects the service

and type of license

The customer shops by selecting

items from a catalogue

The applicant applies for a li-

cense

The customer places an order

The applicant fills in personal de-

tails

The customer fills in personal de-

tails

Personal details are verified

against public registers; rules

and regulations are checked

against a rule database

Credit card data are verified ex-

ternally; order consistency and

completeness are verified by ERP

or other systems

The applicant receives a confir-

mation e-mail with a case ID

The customer receives a confir-

mation e-mail with an order ID

Other (legacy) systems may pro-

cess the same information

An administration manager re-

views stock and enterprise finan-

cial data

Table 2.1: Functional mapping between the Pet Store and Driver’s License

applications

2.4.4 Non-functional requirements matching

Simply matching functional requirements is not sufficient to ensure

successful reuse; non-functional requirements also have to be consid-

ered. Figure 1 shows a logical architecture that fits both the Driver’s

license and Pet Store applications:

Browser

Internet
Web

Server

Web

Container

EJB

Container

Legacy

app

(Power-

Builder)

Oracle

DB

Figure 2.1: Logical architecture of the Driver’s License application

The product had to satisfy a number of environmental and other non-

functional constraints. Pet Store matched these requirements quite

well, with some exceptions:

123

Driver’s License Pet Store

Platform: J2EE v. 1.2 J2EE v. 1.2

3- or n-layer architecture 3-layer architecture

Browser: IE5 and equivalent Web pages are generated from

tagged templates, adaptable to

different browsers

Data storage in legacy database Data is stored through Data Ac-

cess Objects, adaptable to re-

quirements; possible mismatch

Deployment platform uncertain Pet Store is a reference/sample

application included by all major

platform vendors

Project size: ≤ 10 forms, ≤ 20

database tables

Pet Store is a relatively simple e-

commerce application of compa-

rable size

Rigorous validation of personal

details needed

Incoming data (orders, ad-

dresses) assumed to be valid;

mismatch

Table 2.2: Non-functional mapping between the Pet Store and Driver’s

License applications

2.4.5 Application server compatibility

The Pet Store application has been used as a benchmark for testing ap-

plication server conformance. For instance, IBM includes it on the IBM

WebSphere Application Server V4.0 for Windows NT product CD. Sim-

ilarly, Oracle provides a Pet Store implementation for their Oracle9iAS

Containers for J2EE (Oracle, Inc, 2003).

The Pet Store application is billed as a reference for both architecture

and implementation by Sun, the vendor most involved in defining and

implementing the J2EE platform. It seemed reasonable to have a high

degree of confidence in the compatibility of the application with all the

major server platforms.

It was therefore expected that basing the Driver’s License application

on Pet Store would make it simple to port it to different application

124

servers. This was an important requirement, since the customer for the

system had not made the final choice of application server at the time

the project began. A server change was consequently almost unavoid-

able.

2.4.6 Other factors

Basing development on Pet Store was expected to give the development

team a number of advantages not available with other forms of reuse:

Development and implementation would be carried out by replacing

all modules within each tier with project-specific code. The Pet Store

architecture would be retained while replacing the actual functionality,

avoiding the need for an architectural design, prototyping, etc.

Because the application would be executable from day one, regressions

were expected to be easy to identify. The developers, project manage-

ment and the customer would be able to see a running version that

implemented the full production architecture at frequent intervals.

Finally, the total time used in development was expected to be less

than for a normal development process, since development effort could

focus directly on implementation, bypassing architecture and design.

The project management expected to be able to show a working subset

of the application to the customer after only two iterations, at least one

iteration less than would otherwise have been the case. An iteration

normally lasted about 3 weeks.

2.5 Results

Our case study found results that can be related to four different areas

of the development project: organization; implementation; data struc-

ture and security; and deployment.

125

2.5.1 Project organization

At the outset, the project team decided on a software development pro-

cess that resembled the Unified Process approach (Larman, 2001). The

U.P. promotes iterative development, and describes iterations within

the following phases: Inception, Elaboration, Construction, and Transi-

tion.

With a working application as a basis, iterations could be run in parallel

in two phases that are usually performed in sequence: the Elaboration

phase and the Construction phase. The Elaboration phase could focus

more on identifying high-risk functionality and non-functional require-

ments, while the Construction phase focused on the implementation of

a stable executable subset of the final product. At the same time, a De-

sign and Implementation model was produced through reverse engi-

neering at regular intervals. Otherwise, design and architectural activi-

ties were largely considered unnecessary, since the development effort

was “reuse with only slight modifications” at the architectural level.

On average, six developers were involved. The development team was

initially organized according to the defined tiers: two people were re-

sponsible for the client tier, two were working on the EJB tier, one per-

son was working on the WEB tier, and one person was responsible for

the database tier. Earlier experience by Frederick (2003) suggests that

this approach has a number of benefits.

However, as development work progressed, it turned out that it would

be better to reorganize work according to what design patterns a team

member was working on. In other words, when a person was work-

ing on the Front controller pattern (which starts in the WEB tier), then

he would also be responsible for the controller-related objects for that

function in the EJB tier.

This provided team members with cleaner interfaces between each

other’s functionality and design patterns, and clear functional respon-

sibilities. The project management also had a better control of respon-

sibility for separate functionality. A consequence was better manage-

ment and implementation of change orders from the customer.

126

However, there were exceptions to this rule. The people working on

the client tier were, in the early stages, very occupied with the design

of the application forms, and parameterization to the WEB tier.

2.5.2 Implementation

The implementation discipline had to produce a working subset of the

final product at regular intervals, maintain the implementation model,

and solve data validation and security issues. At the outset, the project

had a working Pet Store enterprise application. This was now to be

transformed into a Driver’s License application enterprise system.

The prime use case was defined as Registration of license application

(Section 2.4). The first functional subset to be produced had to receive

and process a driver’s licence application, through all tiers, and store

it successfully in the database. This implied connecting all the differ-

ent tiers so that application form data could be properly processed and

stored in the database.

Connecting a new set of client tier web pages to the WEB tier proved

simple. Once the web pages were designed, it was largely a param-

eterization task to secure a connection to the various handlers on the

WEB tier. This is largely due to the screen definitions held in xml files,

inherent in the Pet Store design.

Similarly, the connection between the WEB tier and the EJB tier proved

to be simple, as the event handling mechanism is largely independent

of the events it handles.

2.5.3 Database structure and data security

The data validation and security issues clearly belonged to the database

tier. Solving these issues in this tier caused no conflicts with the func-

tional responsibilities of the rest of the development team.

The structure of the legacy database was completely different from that

of the Pet Store database. This required changes in the bean-managed

persistent entity beans, and their Data Access Object pattern. The inter-

127

action between the Controller administrating calls to the database, and

the entity beans performing the calls, also had to be reworked.

The validation and security issue was caused by a fundamental mis-

match between an assumption underlying Pet Store and the Driver’s

License application. Since the Pet Store is a shop, it assumes that its

customers will provide valid data and simply accepts the data prof-

fered. However, in our case there are extensive rules and regulations to

take into account. Also, since the end result-a driver’s license-is a valu-

able legal document, there is a danger of malicious misuse and fraud.

It is therefore necessary to validate and protect the data in what was

previously a closed, in-house system at the Road Authority.

The security issue was resolved by storing driver’s license application

information in temporary tables until the system approved the appli-

cation. Triggers and stored procedures ensured that accepted and ap-

proved application data was moved to the proper tables. This process

was not part of the Java application logic at all. Application data that

was not accepted was discarded. Both the database structure and se-

curity issues required several iterations before they were satisfactorily

closed.

In the first iteration, no such temporary tables were implemented. In

addition, only page one of the application form was stored in the

database. Then, step by step during the following iterations, data from

all application form pages were stored securely in the database. This

had no negative impact on the progress of the rest of the project.

2.5.4 Deployment

Deployment on the production platform was the focus of the transi-

tion phase. During the preceding elaboration and construction phases,

all implementation and deployment were performed using the Oracle

OC4J application server. This application server is very easy to use, en-

abling the development team to produce subsets of the final product at

short intervals.

Six months into the construction phase, the customer decided to im-

128

plement its new public portal on the IBM Websphere 4.01 application

server. The transition to this new application server proved to be dif-

ficult. Both the original Pet Store application and the Driver’s License

application failed to deploy to this server.

This came as a surprise to the development team. If the Pet Store enter-

prise application acts as a reference application, then it should be able

to run on all application servers that are certified to run J2EE. Conclu-

sions derived from researching the issue can be summarized as follows:

• Different application servers have different deployment descrip-

tor files, and these are organized differently.

• OC4J had a simpler and less restrictive RMI check, while Web-

sphere required a strong RMI check.

• The classloaders of Websphere caused problems, and may be re-

lated to the strong RMI check.

• The Websphere single server edition behaved differently than the

advanced edition.

• Websphere generally proved very difficult to work with (Aeine-

hchi, 2002). The compile, deploy, and run cycle was slow and re-

quired a lot of machine resources. Debugging was difficult, and

often gave little valuable information.

2.6 Conclusions and future work

Our case study investigated a commercial project to develop a Web-

based public service, for applying for driver’s licenses. Having com-

pleted the requirements documentation, the project had a choice be-

tween several possible strategies for the actual development. One pos-

sibility was to design and implement the application from the ground

up, using available tools in the form of Design Patterns, documented

Best Practices and sample code.

Alternatively, it could be designed around a commercial or public do-

main framework or library. Ultimately, the team chose a different ap-

proach, by basing development on a reference application.

129

The developers had relatively little experience with the J2EE platform

and multi-level architectures. They therefore wished to find a form of

reuse that did not require the design and full implementation of a com-

plex architecture from abstract descriptions, such as Design Patterns or

architecture guidelines. The Pet Store application had a sufficient level

of functional and non-functional similarity to the new application that

it was chosen as the basis for the new application.

The development team, together with central members from the partic-

ipating research institutions, performed a post mortem analysis on the

project experience. The following sections summarize the results.

2.6.1 Positive experiences

Through Pet Store, the project possessed a basic architecture that em-

ployed the current best practices on J2EE design patterns and technol-

ogy. Since the application was already implemented, little effort needed

to be focused on architectural issues, and most effort was expended on

implementation activities.

The learning curve for the team members was very good. This was

definitely a problem-based learning approach, while at the same time

the textbook answer was readily at hand.

The development tasks were considered professionally challenging,

both with regard to functions of the final product, and to the imple-

mentation in a new and immature technology. The team motivation

was therefore high, even though this was no longer a ”pure” develop-

ment project.

Collaboration within the group was very good. Because of the chosen

approach, there was always an executable application, and it was there-

fore easier to coordinate the efforts of the team members. The problem

of people working for an extended period on an isolated problem and

thereby drifting away from the group was avoided.

The total time and effort spent on the development matched expec-

tations quite well. There is no doubt that this approach worked well

for the application, and resulted in a combination of flexible architec-

130

ture and short time to market that would otherwise have been hard to

achieve.

2.6.2 Negative experiences

Deployment on a production application server was expected to be

easy, since Pet Store-the reference application used as a basis-is sup-

plied as a sample application by the platform vendors. However, this

turned out not to be the case, and even with assistance from the vendor,

it was difficult to deploy both Pet Store and the new application on the

production server.

The database design in Pet Store is stand-alone, and the application ar-

chitecture does not contain provisions for interfaces and adaptation to

existing database schemas (as opposed to purely technical adaptation

to DBMS servers, which is covered by the Data Access Object pattern

used). The database structure issue was solved by rewriting most of

the data access objects, so here the benefit of using Pet Store as a basis

was small.

The mismatch between the assumption of user trustworthiness be-

tween Pet Store and the Driver’s license application is an example

of a non-functional requirement that has architectural implications.

When evaluating a development approach, it is important to check both

functional and non-functional requirements closely. Special attention

should be paid to non-functional requirements, even if it can be more

difficult than checking functional requirements.

2.6.3 Conclusions

Basing new development on the code of an existing, well-documented

application can be a viable method of reuse. Provided that functional

and non-functional requirements match, the actual domain of the ref-

erence application and the new application need not be the same.

Database structure and security are two areas where particular care

must be taken, and where the potential for reuse may be limited. The

Pet Store application by Sun is sufficiently well structured and docu-

131

mented to be usable in this role.

2.6.4 Future work

In most e-commerce applications, there is a front end that presents what

products are available, and accepts user information. Other tiers are re-

sponsible for processing and storing this information, and producing

a response that is then presented to the user by the front end. Data is

stored in a database and passed on to other systems for further process-

ing.

In the Pet Store reference application, this functionality is described at

two different levels: at an analytical and design level, through a set of

design patterns, and at an implementation level through the implemen-

tation of Pet Store.

The software improvement project defined a refinement process that

would produce a toolbox containing an increasing number of refined

model elements, frameworks, components and design patterns.

The elaboration phase of the development processes should also con-

tain a refinement discipline, a discipline with reuse. The heart of this

discipline is a search for similarities at many levels: functional and non-

functional requirements, architecture and code.

Conversely, refinement for reuse should aim at producing artefacts

at many levels. One way would be to attempt to refine a Pet Store

type application into a set of design patterns (a pattern language for

e-commerce applications?), and their equivalent components.

Then, when a similar e-commerce application is to be developed, the

development process would mostly be a process of connecting a set

of well-defined design patterns and their components into a working

application.

Some of the preconditions needed to succeed using the reference-

application approach were stated in the sections on functional and non-

functional requirement matching (2.4.3–2.4.6). Further work is needed

to determine a more general specification of the necessary and suffi-

cient conditions.

132

Acknowledgments

The authors are most grateful to Prof. Dag Sjøberg, Prof. Ray Welland

and Andrew McDonald for their extensive input and comments. This

project was in part funded by the Norwegian Research Council as part

of the SPIKE project. We would also like to mention the entire project

development team at EDB Business Consulting, without whom this

project would not have been a success.

133

134

Bibliography for paper 2

Aeinehchi, N., 2002. Do NOT Use WebSphere Unless You are BLUE. URL

http://www.theserverside.com/reviews/thread.jsp?thread id=13639

Almaer, D., 2002. Making a Real World PetStore, TSS Newsletter #31. URL

http://www.theserverside.com/resources/article.jsp?l=PetStore

Alur, D., Crupi, J., Malks, D., 2001. Core J2EE Patterns. Prentice-Hall, Upper

Saddle River, NJ, USA, ISBN: 0130648841.

Apache Jakarta Project, 2003. STRUTS Home Page. URL http://jakarta.

apache.org/struts/

Bernus, P., Nemes, L., 1996. A Framework to Define a Generic Enterprise

Reference Architecture and Methodology. Computer Integrated Manufac-

turing Systems 9 (3), 179–191.

Brooks, F. P. J., 1987. No Silver Bullet: Essence and Accidents of Software

Engineering. IEEE Computer 20 (4), 10–19.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., 1996.

Pattern-Oriented Software Architecture. Wiley, Chichester, ISBN: 0 471

95869 7.

Ciancarini, P., Tolksdorf, R., Vitali, F., Rossi, D., Knoche, A., 1998. Coordi-

nating Multiagent Applications on the WWW: A Reference Architecture.

IEEE Transactions on Software Engineering 24 (5), 362–375.

Ditzel, C., 2003. Charles’s Corner: Java Technology Pointers. URL http://

java.sun.com/jugs/pointers.html

Frederick, C., 2003. Extreme Programming: Growing a Team Horizontally.

In: Marchesi, M., Succi, G. (Eds.), XP/Agile Universe 2003. Vol. 2573 of

Lecture Notes in Computer Science. Springer-Verlag Heidelberg, pp. 9–17.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns: El-

ements of Reusable Object-Oriented Software. Addison-Wesley, Boston,

MA, USA, ISBN: 0201633612.

Hallsteinsen, S., Swane, E., 2002. Handling the Diversity of Networked De-

vices by Means of a Product Family Approach. In: Software Product-

Family Engineering. Vol. 2290 of Lecture Notes in Computer Science.

Springer-Verlag Heidelberg, pp. 264–281.

Henry, E., Faller, B., 1995. Large-Scale Industrial Reuse to Reduce Cost and

Cycle Time. IEEE Software 12 (5), 47–53.

Infragistics, 2003. Expense Application—Reference Application. URL

http://www.infragistics.com/products/thinreference.asp

135

ISO, 1998. ISO/IEC 10746: Information Technology—Open Distributed

Processing – Reference Model. URL http://www.iso.org/iso/en/

CombinedQueryResult.CombinedQueryResult?queryString=10746

Kassem, N., 2000. Designing Enterprise Applications with the J2EE Plat-

form. Addison-Wesley, Boston, MA, USA, ISBN: 0201702770.

Larman, C., 2001. Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design and the Unified Process, 2nd Edition. Pren-

tice Hall, Upper Saddle river, NJ, USA, ISBN: 0130925691.

McIlroy, D., 1968. Mass Produced Software Components. In: Naur, P., Ran-

dell, B., Buxton, J. (Eds.), Software Engineering: Concepts and Tech-

niques. NATO Conferences. Petrocelli, Garmisch, Germany, pp. 138–156.

Microsoft, Inc, 2003a. Application Architecture for .NET: Designing Applica-

tions & Services. Microsoft Press, Redmond, WA, USA, ISBN: 0735618372.

Microsoft, Inc, 2003b. Duwamish 7.0. URL http://msdn.microsoft.

com/netframework/downloads/samples/?pull=/library/en-us/dnbda/

html/bdasampduwam7.asp

Microsoft, Inc, 2003c. Microsoft .NET Pet Shop 2.0. URL http://msdn.

microsoft.com/netframework/downloads/samples/?pull=/library/

en-us/dnbda/html/bdasamppet.asp

Ngu, A., 2003. CS5369A Enterprise Application Integration. URL http:/

/www.cs.swt.edu/ hn12/teaching/cs5369/2003Spring/admin/intro.

html

Öberg, R., 2003. Review of ”The Petstore Revisited: J2EE vs .NET Ap-

plication Server Performance Benchmark”. URL http://www.google.

com/search?q=cache:8OPCFEFDFd0J:www.dreambean.com/petstore.

html+petstore+java+experience&hl=en&ie=UTF-8

Oracle, Inc, 2003. Oracle9iAS Containers for J2EE User’s Guide Release 2

(9.0.2). URL http://otn.oracle.com/tech/java/oc4j/doc library/902/

A95880 01/html/toc.htm

Rational, Inc, 2003. PearlCircle Online Auction for J2EE. URL http://www.

rational.com/rda/wn 2002.jsp?SMSESSION=NO#pearlcircle

Reimer, D., Srinivasan, H., 2003. Analyzing Exception Usage in Large Java

Applications. In: Romanovsky, A., Dony, C., Knudsen, J. L., Tripathi, A.

(Eds.), ECOOP ’03: Workshop: Exception Handling in Object Oriented

Systems: Towards Emerging Application Areas and New Programming

Paradigms. Darmstadt, Germany, pp. 10–19.

Rising, L., 1998. The Patterns Handbook. Cambridge University Press, Cam-

136

bridge, United Kingdom, ISBN: 0521648181.

Singh, I., Stearns, B., Johnson, M., Team, E., 2002. Designing Enterprise Ap-

plications with the J2EE Platform. Addison-Wesley, Boston, MA, USA,

ISBN: 0201787903.

Sun Microsystems, Inc, 2002. J2EE Patterns Catalog. URL http://java.sun.

com/blueprints/patterns/j2ee patterns/index.html

Sun Microsystems, Inc, 2003. Java Pet Store Demo 1.1.2. URL http://java.

sun.com/blueprints/code/jps11/docs/index.html

Thomas, W. T., Delis, A., Basili, V. R., 1995. An Analysis of Errors in a Reuse-

Oriented Development Environment. Tech. Rep. CS-TR-3424, University

of Maryland, Institute of Advanced Computer Studies, USA.

van der Linden, F., 2002. Software Product Families in Europe: The Esaps &

Café Projects. IEEE Software 19 (4), 41–49.

van der Linden, F., Muller, J., 1995. Composing Product Families from

Reusable Components. In: 1995 International Symposium and Workshop

on Systems Engineering of Computer Based Systems, 1995. IEEE Com-

puter Society, Tucson, AZ, USA, pp. 35–40.

Yin, R., 2003. Case Study Research, Design and Methods, 3rd Edition. Sage

Publications, Thousand Oaks, CA, USA, ISBN: 0-7619-2552-X.

137

138

Paper 3

Defect frequency and design patterns: an empirical

study of industrial code

This paper appeared in IEEE Transactions on Software Engineering,

vol. 30, issue 12, pp. 904–917, Dec. 2004.

139

140

Defect Frequency and Design Patterns: An Empirical Study of

Industrial Code

Marek Vokáč

Simula Research Laboratory, NO-1325 Lysaker, Norway

Abstract

Software “Design Patterns” seek to package proven solutions to design prob-

lems in a form that makes it possible to find, adapt and reuse them. A com-

mon claim is that a design based on properly applied patterns will have fewer

defects than more ad hoc solutions.

This case study analyzes the weekly evolution and maintenance of a large

commercial product (C++, 500 000 LOC) over three years, comparing defect

rates for classes that participated in selected Design Patterns to the code at

large. We found that there are significant differences in defect rates among the

Patterns, ranging from 63 % to 154 % of the average rate. We developed a new

set of tools able to extract design pattern information at a rate of 3×106 lines

of code per hour, with relatively high precision.

Based on a qualitative analysis of the code and the nature of the Patterns, we

conclude that the Observer and Singleton patterns are correlated with larger

code structures, and so can serve as indicators of code that requires special at-

tention. Conversely, code designed with the Factory pattern is more compact

and possibly less closely coupled, and consequently has lower defect num-

bers. The Template Method pattern was used in both simple and complex

situations, leading to no clear tendency.

Key words: design patterns, defects, defect frequency, industrial code,

case study, maintenance

3.1 Introduction

Software Design Patterns, as first formalized by Gamma et al. (1995),

have become popular in the object-oriented software community. Some

of the patterns have been incorporated into widely used architectures

and frameworks. Examples of this are the Observer pattern in event-

based user interfaces, and the Factory pattern in Microsoft COM, MFC

and J2EE.

141

Common arguments for the use of Design Patterns often relate to de-

fects; by designing an application with proper use of Design Patterns,

we should reduce the number of defects (see for instance Guéhéneuc

and Albin-Amiot (2001)). Others have claimed that positive conse-

quences of using Design Patterns are additional flexibility and easier

understanding of the design (Rising (1998); Buschmann et al. (1996);

Larman (2001)), or expected reduced proneness to change (Bieman et al.

(2003), though this study found the opposite, contrary to its expecta-

tions).

In this research, we wished to investigate the claims regarding reduced

defects by determining the defect rates and Design Pattern usage of

a large industrial software product. We performed a case study on a

Customer Relationship Management (CRM) product. During the study

we developed a tool for fast analysis and extraction of Patterns from

C++ code. Having access to the complete history of the product for

three years made it possible to analyze the defect rates and correlate

them with the usage of Design Patterns. The defects were identified as

a result of pre-release testing and post-release reporting by users.

The rest of the paper is organized as follows: Section 3.2 lists related

work. Section 3.3 gives the goals, the choice of the studied software

product and the pattern extraction tool used for the automated analy-

sis. The statistical model and quantitative results are presented in Sec-

tion 3.4. Threats to validity are addressed in Section 3.5. Finally, Sec-

tion 3.6 summarizes the results, concludes and outlines future work.

3.2 Related work

Prechelt and Unger (1999); Prechelt et al. (2001) reported on two exper-

iments on Design Patterns. The first experiment sought to test whether

the presence of Design Patterns in program documentation had an ef-

fect on maintenance. The results were positive in the sense that mainte-

nance was either faster, or introduced fewer errors, when the software

was documented in terms of Design Patterns. Observer, Composite and

Visitor were the tested patterns.

142

In the second experiment maintenance tasks were performed on

“equivalent” versions of several programs, with one version containing

Design Patterns and the other having a simpler, more straightforward

structure. The results varied with the pattern used. Visitor was incon-

clusive, while Observer and Decorator resulted in less time being used

for the maintenance tasks. Use of the Abstract Factory pattern had no

significant effect.

This experiment was replicated by Vokáč et al. (2004), with the differ-

ence that a real programming environment was used instead of pen and

paper as in the original experiment. Paid industry professionals were

used as subjects. The results were similar for the Observer, Decorator

and Abstract Factory patterns, while the Visitor and, to some extent,

Composite patterns had strongly negative results, in that code derived

from these patterns proved significantly harder to maintain, both in

terms of time used and the number of errors.

A case study performed by Bieman et al. (2001) analyzed 39 versions

of an evolving object-oriented software system. They found a strong

relationship between class size and change frequency. Having taken

this into account, they also found that classes that participate in Design

Patterns are just as prone to change as other classes, and that prone-

ness to change is positively correlated with reuse: classes that were

the most reused were also the most change-prone. A later, more exten-

sive study (Bieman et al., 2003) mostly confirmed these findings, though

with one significant contradiction.

A threat to the validity of the 2001 study (Bieman et al., 2001) was the

size and nature of the data set. The Singleton pattern was identified in

10 instances, Iterator in four and Factory Method and Proxy in only one

instance each. The system under study evolved from 24 000 LOC and

199 classes to 32 000 LOC and 227 classes over the study span. Interme-

diate versions were not evaluated, but the total number of changes per

class was counted. All changes were included, regardless of whether

they were preventive, adaptive, perfective or corrective.

In the 2003 study (Bieman et al., 2003), much larger software was stud-

ied, including NetBeans at 750 000 LOC, improving the external valid-

143

ity of the study. However, the identification of patterns was done man-

ually, based on the documentation—on the explicit assumption that in-

tentional patterns are the most interesting and that they will be docu-

mented by the developers. Patterns that are simply used by developers

without being documented as such, will be missed by this approach.

Further case studies have been conducted by several groups (Schmidt

and Stephenson, 1995; Neumann and Zdun, 2002; Chu et al., 2000). The

subjects of the studies are industrial systems of up to 30 000 LOC, but

they address re-engineering or construction concerns, not maintenance

over extended periods.

3.3 Case study goals, subject and conduct

The goal of this case study was to investigate the possible connection

between the use of certain Design Patterns, and the error rates in the

code. To achieve this, it was necessary to 1) choose the patterns to be

studied; 2) obtain a suitable study subject, and 3) find or create a tool

that can recover Design Patterns from code with sufficient speed and

precision.

3.3.1 Design patterns

In this section, we describe the five patterns chosen for investigation,

and the method by which they were chosen. For each pattern, we list

the features that led us to expect different

The selection of Design Patterns was based on several criteria: the

structure of the patterns, to investigate the effects of fundamentally dif-

ferent patterns; the occurrence of pattern names in academic literature;

the occurrence of pattern names in relevant Web forums; and the oc-

currence of pattern names on the Web in general. The first criterion

is considered the most important, while the remaining criteria we in-

cluded to ensure that the chosen patterns had some practical relevance.

Academic literature was searched via the ISI Web of Knowledge, IEEE

and ACM databases, and the results are shown in Table 3.1. Simply

144

ISI IEEE/ACM

Pattern Raw Content Raw Content

Composite 4 4 42 15

Observer 8 6 9 8

Factory 5 4 16 9

Decorator 3 4 4 4

Adapter 1 3 5 4

Bridge 3 0 15 5

Singleton 2 2 4 3

Visitor 1 1 4 4

Proxy 1 0 5 4

Façade 3 1 2 2

Template Method 1 1 1 1

Sum 32 26 107 59

Table 3.1: Design Pattern ranks in academic literature. The “Raw” column

lists the number of hits for the query, while the “Content” column lists

the articles that were relevant.

counting the hits was not enough—the results of such searches can be

quite imprecise. For instance, the word “‘Composite” also matches

“compositing” in the IEEE search engine, which leads to many false

hits in the area of CASE tools and architecture papers. For the Web in

general, a series of searches was done using Fast, AltaVista, Google,

Yahoo, MSN and Lycos.1 The search criteria were "design patterns"

software <pattern name> for the candidate patterns listed below.

The search target was the web in general—or more precisely, the subset

of the Web included by each search engine.

We chose the following five patterns for our study: Singleton, because

it may be tempting to use it simply as a replacement for global vari-

ables; Template Method, because it was known to be used extensively

in the code we later wished to analyze; Decorator, because it can be a

deceptively simple pattern that can hide quite complex behaviour; Ob-

server, since it is central to the event-based architectures of several pro-

1. Excite, WebCrawler and MetaCrawler were excluded because they limit the num-

ber of hits to less than about 100, so they cannot be used for this kind of search.

145

gramming platforms (Microsoft Windows, .NET, and Java); and Fac-

tory, which has also become part of mainstream architectures. All of

these patterns appeared to be of interest according to our surveys.

A Design Pattern, as described by Gamma et al. (1995), is a description,

using prose and semi-formal diagrams, of a way to structure classes

in a program. However, the ultimate expression of Design Patterns is

in executable code, whether generated from a model or manually. It

follows that the observed effects, in terms of defect rates or maintain-

ability, are related to the patterns via the code structure. Our analysis

of the expected effects is therefore founded on the kind of structure that

the selected patterns prescribe.

The effects of some patterns on object-oriented software metrics have

been described by Huston (2001). Patterns can influence several kinds

of metrics: coupling measures, inheritance depth, and method counts.

Huston concludes that the introduction of Design Patterns in general

does not lead to code that exhibits metric values associated with high

defect rates. This can at least be seen as not contradicting the claim that

Design Patterns should lead to lower defect rates.

However, different patterns do have different effects and applicability.

In the following paragraphs we briefly describe the structures and ex-

pectation connected to the five patterns chosen for the case study.

Factory Method—a simple structure

The Factory Method pattern is used in places where one of several

possible subclasses (products) should be created, and the instantiating

class (the client) cannot anticipate which subclass it should be. It may

be that the knowledge does not belong in the client, or even that it is

genuinely inaccessible to the client. Instead, it is located in a Factory

Method.

We generally expect this pattern will lead to simple structures and rel-

atively small amounts of code, without fundamentally influencing the

architecture of the application.

146

Observer—a pattern for central structures

Observer, often implemented as Publish-Subscribe, is a pattern that

specifies how a number of objects—observers—may be informed of

changes to one object, the subject. Usually, the subject will be some kind

of data-carrying object, and the observers will be views or processes

that present or react to changes in the data. The classic Model-View-

Controller pattern or one of its variants is often implemented using an

Observer.

Both Observer and its related patterns (MVC, Publish-Subscribe) fun-

damentally influence the design of an application. If the subject is the

applications’ data model, and the observers are user interfaces, we ex-

pect not only that the implementation of the pattern to include a large

amount of code, but also that that code will be fairly complex. The

number of subjects is generally greater than one and is determined

at runtime, making it much more difficult to arrive at a deterministic

model of how the system behaves.

Singleton—global access to a single instance

In many ways, Singleton is similar to a global variable. Its scope may be

limited by name spaces or similar constructions, but within the scope

it is accessible to all. The main responsibility of the Singleton pattern is

to ensure the existence of exactly one instance of the class in question.

Note that a Singleton carries state—otherwise it would not need an in-

stance, and precise control over the number of instances. This leads us

to expect that it will often be used for objects that should be accessi-

ble to a large number of dependent objects, if not always globally. A

change to a Singleton will therefore tend to have a large impact. On the

other hand, the presence of accessible singletons will often remove the

need to pass parameters down long call structures, thereby avoiding

needless dependencies.

147

Decorator—adding functionality in layers

This pattern is used to extend the functionality of a base object. Inher-

itance is appropriate when extensions are made in a hierarchical man-

ner; Decorator is used where more than one extension can be active at

any given time, and if the extension is to be made dynamically at run

time.

Decorators can significantly reduce coupling in a system, since they

are not visible from the outside of the pattern; clients simply call the

method without ever being aware of a possibly large number of dec-

orator objects inside. However, this can also make the system more

difficult to analyze, since the actual call graph (including order of calls)

cannot be determined by static analysis.

Template Method—replacing building blocks

The Template Method is suited to cases in which a high-level algo-

rithm remains constant, but the underlying building blocks are subject

to change.

The pattern is applicable to both large and small problems. The high-

level task may be to fetch and process data from a database, and a build-

ing block might be the syntax for one specific DBMS. It could also be a

sophisticated routing algorithm in which the building blocks are them-

selves algorithms composed of smaller, replaceable blocks, forming a

whole tree of code.

3.3.2 The SuperOffice CRM5 product

The SuperOffice CRM5 product, made by SuperOffice ASA in Norway,

was chosen as the study subject. It is a fairly large, mature commercial

product. The company provided full access to the source code and its

history, as well as the bug tracking database. The author was a senior

member of the development team that created the studied version, and

thus had good knowledge of the code.

The product is a Customer Relationship Management system, which

148

is used by companies to keep track of their customers, sales force di-

aries, activities and sales. It runs on Microsoft Windows and is a classic

client/server application. The company has a heavy emphasis on user

friendliness and consequently there is a lot of GUI code. The applica-

tion is written entirely in C++, and was almost totally rewritten in the

year 2000.

The application is sold in one standard version in 11 languages, and is

installed at 11 000 customer sites. New versions were released approx-

imately twice a year during the study period (2001-2003).

Metric Value

Total lines 1 114 092

Lines of code (LOC) 505 367

Number of classes 2 047

Number of files 2 809

Number of methods 30 823

Declarative statements 150 685

Executable statements 194 625

Table 3.2: Descriptive metrics for SuperOffice CRM5

The code has been maintained and extended for the past three years

by a stable team of developers, about half of whom were involved in

writing the original code. A bug tracking system (TechExcel, 2004) was

used to track reported defects in the code, whether found internally

during formal pre-release testing, or at customer sites. The bug track-

ing system was partially integrated with the Control Version System

(CVS (Perforce, Inc, 2004)). Changes to the code were checked into the

version control system in transactions that generally corresponded to

one functional change, whether corrective or otherwise.

Table 3.2 gives basic size metrics for the product, while Table 3.3 de-

scribes the evolution of the system during the 153-week period covered

by the study.

149

Change type No. % Lines added changed deleted

Corrective 1 619 31% 15 598 10 503 6 962

Other 3 562 69% 33 369 21 813 20 202

Total 5 181 48 967 32 316 26 164

Table 3.3: SuperOffice CRM5 evolution

3.3.3 Identifying design patterns in C++ code

Early in the study, we formulated the following goals for a pattern re-

covery tool:

• It must be possible to describe a structural signature and to ex-

tract from a C++ code base the set of classes that correspond to

this signature. Given that some patterns result in complex struc-

tures, some programming effort is to be expected.

• The method must scale extremely well, and be able to handle

amounts of code in the 108 LOC range with running times on

the order of hours, or at least within a weekend. Preferably, the

addition of new patterns should not force a re-run of the whole

process.

• The input data should be in the form of “untreated” code files,

i.e., whatever structure the source project is already in. Output

should be in a form that is easily transferable to statistical pack-

ages for further analysis.

Existing tools found in the literature (Kramer and Prechelt, 1996; Florijn

et al., 1997; Bansiya, 1998; Antoniol et al., 1998, 2001; Keller et al., 1999;

Schauer and Keller, 1998; Albin-Amiot et al., 2001; Guéhéneuc and

Albin-Amiot, 2001) have not been documented to possess the combi-

nation of speed, recovery and precision needed for our case study, with

the possible exception of the work of Balanyi and Ferenc (2003)—which

only appeared after our study was in progress.

Due to the lack of a satisfactory, off-the-shelf tool, we decided to con-

struct our own. The tool was built using several sub-components to

handle different stages of the process. During our case study, it per-

formed satisfactorily. More details on the tool can be found in (Vokáč,

150

2005).

C++ code is parsed using a commercial parsing tool (Scientific Tool-

works Inc., 2003), to create a database of metadata (lists of types, names,

variables, methods, etc.,) and the relations between them, such as

“method X calls method Y”. The metadata is then transferred to an SQL

Server database, indexed, and patterns are recovered through queries

that correspond to the structural signature derived for each pattern.

With simple index tuning, excellent performance was realized, while

the use of SQL made it easy to debug the recovery process while work-

ing with the full data set.

In addition, if we wish to examine the evolution of the system over

time, data extracted from CVS can be added to the metadata. By com-

bining CVS data with the program metadata, the evolution of patterns

over time can be traced, or pattern presence can be correlated with edit-

ing activities such as corrective maintenance.

Errors in the recovery of patterns from code would constitute a signifi-

cant threat to the validity of this study. The subject is therefore treated

in some detail in this section. There are two types of error that should

be evaluated: false positive and false negative. A false positive occurs

when a pattern is recognized, even if the classes concerned do not re-

ally conform to the pattern structure. A false negative is when classes

do conform to the pattern, but are not recognized.

False positives are relatively easy to check, by inspecting the code that

has been identified by the tool to determine whether it really does con-

form to a pattern. False negatives are, however, much more difficult

to identify, since we would, in principle, have to identify all instances

of all patterns in the code and then compare these to the output of the

tool. For software of any significant size (>10 KLOC) this is not a real-

istic task. As a substitute for a total analysis, we can examine a random

sample of the classes and determine the patterns present. This will give

us an indication of the number of false negatives.

Generally, a precise and detailed specification of the structural signa-

ture of a pattern will reduce the number of false positives, but increase

the risk of false negatives. The exact structural signature is tied to

151

language-specific features, and is also dependent on how stringently

we interpret the structure of the pattern in question, viz. the discus-

sions on inheritance depth and other parameters in papers by Florijn

et al. (1997); Antoniol et al. (2001); Balanyi and Ferenc (2003).

One challenge is caused by the presence of preprocessor macros in the

C and C++ languages. It is possible to code complicated declarations

and structures in macros, which are then difficult to parse and analyze.

While the problem is not completely intractable, as shown by Badros

and Notkin (2000), the parsing tool we use has only limited prepro-

cessor parsing support. This aspect must be taken into account when

validating the use of our tool on any given set of software.

Since a Design Pattern is an informal specification of a recommended

structure, it will be translated into program code differently in different

projects. Any discussion of error rates must, therefore, be seen in rela-

tion to application of the method to a particular set of software items.

It is also necessary to define exactly what we mean by an instance of a

certain Design Pattern. To take a simple example, consider Factory: one

Factory class may have methods to create one or more Product classes.

Should we count every combination of Factory and Product as an in-

stance, or should one Factory class count as a single instance, regardless

of the number of products? Similar situations occur in most patterns,

since they specify relationships between multiple classes.

In our evaluations, we have adopted the simple definition, according to

which one Factory class counts as a single instance. Similarly, we count

one instance of the Observer pattern for every Subject; one Template

Method for each template method; one Decorator for each Decorator

class; and one Singleton for each Singleton class.

It was necessary to adjust the pattern-recovery tool for two particular

patterns: Observer and Decorator. The Observer pattern can be imple-

mented in two fundamentally different ways. The “classic” structure

specifies that each Subject should keep track of its Observers directly,

using a collection of object references. This introduces a fairly strong

two-way coupling. An alternative approach is to use some kind of

message broker to handle the relations between subjects and observers,

152

breaking the direct two-way coupling between a Subject and its Ob-

servers. This is the approach adopted globally in the CRM5 code, and

the tool was adapted to this Subject/Broker/Observer structure.

For Decorator, a related problem exists, that of aggregation. The tool

was adapted to the kind of aggregation generally used in CRM5 code.

False positives

The rate of false positives was determined by manually examining all

detected instances of all patterns. The results for all patterns are given

in Table 3.4.

Pattern Instances Nfalse Error rate

Factory 53 8 15.1 %

Singleton 45 0 0.0 %

Observer 20 3 15.0 %

Template Method 163 2 1.2 %

Decorator 9 0 0.0 %

Table 3.4: False positives

Most of the false positives identified for the Factory pattern were

classes that used inner (nested) classes. From the outside this looks

like a Factory instance, since the inner class is created by the outer class

and by nothing else. However, this usage does not correspond to the

intent of Factory, so it was classed as a false positive. It is quite feasible

to add the condition “product class must not be nested within factory

class” to the structural signature for Factory in a refined version of the

rules.

In the Observer cases, we are dealing with a “loosely coupled” ver-

sion of Observer, in which all notifications are handled by a centralized

message broker class. This differs somewhat from the classical, simple

Observer pattern, in which every Subject keeps track of its Observers

separately. There are other forms of interaction through the Message

Broker than just those that accord with the Observer pattern, and the

three false positives are such cases. Since the structure of the pattern is

153

already quite complex, further refinement is difficult without risking a

greater number of false negatives.

The structure for the Template Method allows for multiple levels of

inheritance, and does not require more than one call to an underlying,

virtual primitive method to consider the caller a parent method. It is a

matter of taste whether one would want to tighten the definition, i.e.,

to demand that there is more than one implementation of the primitive

method, or more than one primitive method for each template method.

The number of false positives would most probably decline, but the

number of false negatives might increase.

Decorator has a somewhat problematic structure, in that it contains an

aggregation (the set of Decorators for one decorated class) that can be

implemented in many ways. The signature was adapted to the known

kind of aggregation implementation in this code, and so we should not

take the zero error rate as being guaranteed in a different setting. Also,

false negatives are more probable for this pattern.

Singleton is a pattern that is fairly easy to recognize, and so the low

false positive rate is as expected.

False negatives

To determine the actual rate of false negatives, we would need to evalu-

ate all classes and find all cases in which a class participates in a pattern

but has not been detected by the tool. With more than 2 000 classes this

is not realistically possible.

Instead, we chose to evaluate a random sample of classes, to get an es-

timate of the false negative rate. From prior knowledge of the code (the

author previously served as a developer and architect for the CRM5

product), a low rate of false negatives was expected. To calculate the

necessary sample size, the following criteria were set:

Required power: 90%. Hypothesized proportion (false negative rate):

20%. Alternative proportion (rate to be tested for): 10%.

154

This yielded a required sample size of 109.2 To guard against randomly

choosing classes that are trivially small or otherwise nonrepresentative,

the actual sample size was increased to 125.

Classes were chosen using a uniformly distributed random number

generator. The chosen classes covered all major modules of the pro-

gram. Figure 3.1 shows the distributions of class sizes, for the full sys-

tem and the sample.

40003000200010000

500

400

300

200

100

0

LOC

N
u
m
b
e
r
o
f
c
la
s
s
e
s

Class size

40003000200010000

70

60

50

40

30

20

10

0

LOC

N
u
m
b
e
r
o
f
c
la
s
s
e
s

Sample Class size

Figure 3.1: Histogram of class sizes, of the full system (left pane) and 125-

class sample (right pane)

The 125 classes were inspected by the author together with a senior de-

veloper from the company. There were nine false negatives. Of these,

one was part of a Decorator, one an Observer and the rest were Tem-

plate Methods (six of the seven were actually part of the same instance

of Template Method, missed due to macros in the code that hid the

virtual method declarations).

The bounds for the false negative rate, as derived from these observa-

tions, are given in Table 3.5.

When interpreting these results, we must keep in mind that they apply

to the SuperOffice CRM5 code only. Given the number of possible ways

to implement the structure described by a pattern, the validity of the

tool must be tested for each new coding style.

2. MiniTAB (MiniTAB, Inc, 2003) version 13.32 was used for all statistical calculations.

155

Pattern Nfalse 95% P

Factory 0 2.3 % 0.000

Singleton 0 2.3 % 0.000

Observer 1 3.7 % 0.000

Template Method 7 10.3 % 0.000

Decorator 1 3.7 % 0.000

Table 3.5: False negatives, from code sample

3.3.4 Extracting defects and design patterns from the CRM5 code

The presence of defects was determined by analysis of the CVS, where

all the source code resides. This system was partially integrated with

the Defect Tracking System used during the study period. A further

textual analysis was made by the author of the comments in the CVS,

to recover defects that did not have such direct links. The approach was

validated by evaluating a sample drawn at random from the full set of

code changes, to check that there were no wrong classifications.

The next step in the study was to obtain weekly snapshots of the com-

plete source code, for the whole study period. Each snapshot reflects

the state of the system at midnight between Saturday and Sunday, start-

ing on February 4th, 2001, when the system consisted of approximately

3 700 files totalling 90 MB of text. The snapshots grew slightly over time

as code was added to the system; in sum, they consist of about 500 000

files and 14 GB of text.

The pattern extraction tool was applied to each snapshot, to parse all

the code, load the metadata into the SQL Server, index it and extract

Design Patterns. The whole process took slightly less than 26 hours on

standard PC hardware.

3.4 Statistical model and quantitative results

This section presents the evolution and rationale behind our statistical

model, and the purely quantitative results obtained from it.

156

The goal of our case study was to determine whether the presence of

certain design patterns is correlated with the defect frequency of the

code. Our raw data consist of the C++ code (here divided into classes),

size metrics for each class, and indicators for whether or not the class

participates in a pattern. The amount of code that is not a member of a

class (global functions) is so small as to be negligible (< 0.1 %).

3.4.1 A simple model

To analyze the data, a binary logistic regression model was cho-

sen (Kleinbaum, 1994). In this model, there are two possible outcomes

of an observation, one of them termed an “event” or “success”. The

logistic equation is

G(event) = β0 + β1X1 + β2X2 · · ·βnXn (3.1)

where G is the link function, which maps the interval (0, 1) onto the

real numbers. We use the standard logit function, G(z) = 1
1+e−z . The

X’s represent the effects we wish to measure, plus known or suspected

confounding factors. An event (z = 1) is defined as the occurrence of

at least one corrective change to one class within one snapshot (week).

We define one indicator variable XPattern for each design pattern we

wish to test for: XObs, XSing, XDecor, XTM and XFact. From both previous

work (Bieman et al., 2001) and intuition we know that code size is a

possible confounding variable; it is reasonable to assume that there are

more defects in a large class than in a small one. We also wish to test

for any systematic trends in time, e.g., whether the defect rate varies in

a linear fashion over time. We thus add the factors XSize and XWeek to

the model.

The estimates β̂i are generally interpreted in terms of odds ratios, giv-

ing the change in odds for an event when the corresponding Xi changes

by one unit. We therefore express code size in KLOC; adding one line

to a class should not affect the number of defects much, but adding

a thousand lines certainly would. The time variable is expressed as

a week number, since we have one snapshot of the code per week; the

157

range is (1 . . . 153). The XPattern are indicator variables, with 0 denoting

the absence, and 1 the presence, of a pattern for a given class.

Our data set consists of all the classes in the system, over the entire

study period. This constitutes a total of 236 876 observations. While

these are actually 153 repeated observations of 1550 classes3, we can

still consider them “independent” in the sense that we are considering

the defect frequency relative to design patterns, size and time. Given

the size of the system, the possible presence of a few classes with ab-

normally high defect rates should not have an undue influence.

An alternative method of analysis might have been to perform an Anal-

ysis of Variance, on a data set that consolidates all 153 snapshots. How-

ever, ANOVA is not tailored for a binary response variable, and the data

material does not contain all combinations of all factors, which results

in the model containing empty cells. Logistic regression is a natural

choice for this kind of data.

This gives rise to the following model:

1

1 + e−z
= β0 + βOXObs + βSXSing + βDXDecor

+ βTXTM + βFXFact

+ βKXSize + βW XWeek (3.2)

where

z =

{
1 if a corrective change occurred

0 if no corrective change occurred

Non-corrective changes are not counted in this model. There were 1 619

events out of a total of 236 876 observations. The βi were estimated

using MiniTAB Binary Logistic Regression, with the following results:

The primary results from a logistic regression are the odds ratios,

whose interpretation is as follows: given a change of one unit in the

3. The discrepancy between the number of classes cited here and in Table 3.2 is caused

by the elimination of undefined classes, templates, classes from standard system li-

braries and other library code that has not been maintained.

158

Odds 95% CI

Coefficient P Ratio Lower Upper

Constant (β0) 0.000

Factory (βF) 0.000 0.66 0.54 0.81

Singleton (βS) 0.000 2.69 2.24 3.24

Observer (βO) 0.000 1.53 1.33 1.75

Template Method (βT) 0.002 0.61 0.44 0.83

Decorator (βD) 0.159 0.49 0.18 1.32

Size KLOC (βK) 0.000 1.98 1.85 2.11

Week (βW) 0.000 0.99 0.99 0.99

Log-Likelihood = −9290.559 Test that all slopes are zero: G = 789.579;

DF = 7; P-Value = 0.000

Goodness-of-Fit Tests
Method χ2 DF P

Pearson 97398 105 1.000

Deviance 13031 105 1.000

Table 3.6: Quantitative results from the fitting of the regression model in

equation 3.2 to the observed data

underlying factor, and keeping all other factors unchanged, the odds

ratio gives the change in probability for the occurrence of an event; in

our case, the correction of a defect. As an example, an odds ratio of 0.5

for Factory would mean that code participating in the Factory pattern

has one half the defect probability of all other code that has the same

size and participation in other patterns.

This model yields several interesting results. First, four patterns have

strongly significant odds ratios, but not in the same directions. The

Factory and Template Methods are correlated with a lower defect fre-

quency, while Observer and especially Singleton are correlated with a

higher defect frequency.

Second, the Size effect is highly significant, as expected. Adding 1 000

LOC to a class roughly doubles the probability of a defect, all other

circumstances being constant. Finally, there is a very slight downward

159

trend (odds ratio 1:0.99) in the number of defects over time. However,

this trend is not considered large enough to invalidate the other results.

3.4.2 A full model including interactions

The model in the previous section only takes into account the main

effects (the five patterns under study) and two possible confounders

(size and time). However, this is too simple as there are more effects to

consider.

First, the participation of classes in patterns is not a simple 1:1 or 1:0

relation. It is possible for a class to participate in more than one pattern;

indeed, the occurrences of patterns and pattern combinations in the

data material, as shown in Table 3.7, indicate that combinations must

be taken into account.

Patterns Occurrences %

No Pattern 183 634 77.5 %

Factory 20 237 8.5 %

Singleton 3 331 1.4 %

Observer 16 061 6.8 %

Template Method 5 381 2.3 %

Decorator 1 513 0.6 %

Factory + Observer 612 0.3 %

Factory + Singleton 2 279 1.0 %

Observer + Singleton 2 390 1.0 %

Observer + Template 953 0.4 %

Factory + Observer + Singleton 485 0.2 %

Table 3.7: Frequencies of pattern occurrences, and percentage of code cov-

ered by the patterns

To take this into account, the model is recoded. Instead of using an in-

dividual indicator variable for each pattern, the pattern participation of

each class is expressed as a combined PATTERN variable. The variable

contains an ‘F’ if the class participates in Factory, an ‘S’ if it participates

in Singleton, etc. A class that participates in both Factory and Singleton

would have ‘FS’ as its PATTERN.

160

The regression is then re-run with Pattern as a factor, i.e., each distinct

value is considered a separate coefficient. As before, the baseline is

formed by those classes that do not participate in any pattern. We then

obtain the results in Table 3.8.

Odds 95% CI

Coefficient P Ratio Lower Upper

Constant (No pattern) 0.000

Week 0.000 0.99 0.99 0.99

Size (KLOC) 0.000 1.90 1.77 2.03

Factory 0.001 0.68 0.53 0.86

Singleton 0.000 4.30 3.43 5.40

Observer 0.000 1.83 1.57 2.13

Template Method 0.011 0.63 0.44 0.90

Decorator 0.170 0.50 0.19 1.34

Factory + Singleton 0.001 2.00 1.35 2.96

Factory + Observer 0.500 1.32 0.59 2.96

Observer + Singleton 0.000 2.08 1.43 3.04

Observer + Template Method 0.637 1.20 0.57 2.52

Factory + Observer + Singleton 0.145 1.82 0.81 4.09

Table 3.8: Quantitative results from the fitting of the recoded model with

pattern combinations to the observed data.

We observe that two combinations yield significant odds ratios: Factory

+ Singleton and Observer + Singleton. This means that classes that

participate simultaneously in both Factory and Singleton are twice as

error-prone as classes that do not participate in any pattern (odds ratio

2.00); a similar result (odds ratio 2.08) is seen for the combination of

Observer + Singleton.

However, there is another possible confounding factor to be taken into

account: the possible interaction between size and pattern. This would

be the case if certain patterns are correlated with a higher or lower size

than other patterns or the classes in general; such a correlation would

imply a collinearity between the pattern and the size coefficients.

We already expected that some patterns (Observer) would lead to

161

larger classes than others (Factory), viz. the discussion in Sections 3.3.1

and 3.3.1. The possibility of an interaction between pattern participa-

tion and code size must be assumed, and so we add interaction terms

XPatternXSize to the model for each pattern.

3.4.3 Final model

The full set of Pattern × Size interactions yields a number of non-

significant coefficients, and their presence disrupts the rest of the

model. We therefore eliminate those interaction terms that are not sig-

nificant; similarly, we eliminate the Pattern × Pattern terms from Ta-

ble 3.8 that were not significant.

We thus obtain the following final model and results:

1

1 + e−z
= β0 + βOXObs + βSXSing + βDXDecor

+ βTXTM + βFXFact

+ βKXSize + βW XWeek

+ βSOXSingXObs + βSKXSingXSize

+ βOKXObsXSize (3.3)

where

z =

{
1 if a corrective change occurred

0 if no corrective change occurred

3.4.4 Interpretation of results

From the quantitative results in Table 3.9 we see that no significant cor-

relation is detected for the Decorator and Singleton patterns. The re-

maining coefficients are significant, and the goodness-of-fit tests indi-

cate that the model fits the data well.

The odds ratios must be interpreted with some care. The presence of a

correlation does not by itself guarantee causality ; for that we must go

back to the code and perform a more qualitative analysis. In addition,

162

Odds 95% CI

Coefficient P Ratio Lower Upper

Constant β0 0.000

Week βW 0.000 0.99 0.99 0.99

Size (KLOC) βK 0.000 1.69 1.53 1.87

Factory βF 0.000 0.63 0.51 0.77

Singleton βS 0.141 1.35 0.91 2.02

Observer βO 0.000 1.55 1.26 1.91

Template Method βT 0.048 0.72 0.52 1.00

Decorator βD 0.154 0.49 0.18 1.31

Singleton + Observer βSO 0.000 0.32 0.21 0.48

Singleton × Size βSK 0.000 13.18 6.29 27.61

Observer × Size βOK 0.009 1.21 1.05 1.40

Log-Likelihood = -9245.342 Test that all slopes are zero: G = 880.012;

DF = 10; P-Value = 0.000

Goodness-of-Fit Tests
Method χ2 DF P

Pearson 98299 105 1.000

Deviance 12941 105 1.000

Table 3.9: Quantitative results from the fitting of the final

regression model in equation 3.3 to the observed data

interaction effects modify the interpretation of of the results. However,

even at a quantitative level the results are interesting.

We can see that the systematic evolution in the number of defects with

time was very slight, as the Week odds ratio is very close to 1. The es-

timated value of 0.99 indicates a small decrease in the defect ratio over

time. Thus, while the defect rate falls significantly (P=0.000), the size of

the effect is negligible. By contrast, adding 1 000 lines of code to a class

increases the probability of defects by two thirds (ratio 1.69), except for

the Observer and Singleton patterns, where there is an interaction effect

to be taken into account.

For the Factory pattern, the expectation from Section 3.3.1 is supported.

163

The odds of a defect in a class involved in a Factory pattern (both the

Factory class itself and its products) are less than two thirds (0.63) of the

“background” defect rate. The insignificance of the Factory × Size and

Factory× Singleton interactions (both dropped from the final model for

lack of significance) increases our confidence that we are indeed look-

ing at a true effect associated with the pattern—or rather, an indication

of the complexity of the situations in which this pattern was used.

For Decorator, the pattern is not used much (one Window class has

eight different, simple Decorators attached) and therefore the data are

too sparse.

The Template Method, on the other hand, is used in many different con-

texts in the code, ranging from small and simple, to relatively deep and

complex (3-4 levels inheritance and nested template functions). The

wide spread is the cause of the rather weak results seen here, P=0.048.

However, in the context of complexity and pattern use, the observation

that there is only a weak relation is itself interesting. Template Method

is a pattern that can hide a complex system, or be used in simple cir-

cumstances. Balaniy and Ferenc remarked that Template Method is a

trivial pattern (Balanyi and Ferenc, 2003), but we see here that its use

may vary from trivial to quite complex. The tendency observed here

is that it does tend to lower the defect rate somewhat (an odds ratio of

0.72), so it is used more for the simpler, rather than complex, functions.

In the CRM5 system, the Singleton pattern is used for objects that are

more or less global in scope, in the form of caches, utilities and repos-

itories of application state. An example is a cache of user preferences;

another is a set of interconnected objects that keep track of the GUI state

(select panels, current data set, etc.). In the regression model we do not

have a significant result (odds ratio 1.35, but P=0.141) for Singleton in

isolation.

However, Singleton is a pattern that has two significant results in com-

bination with other factors: Size, and the Observer pattern. Signifi-

cant interaction factors mean that the effect is a function of the vari-

able it interacts with, and the main coefficient βS only yields the effect

when the interacting variable is 0, i.e., Singletons that are not simul-

164

taneously Observers. We follow the interpretation given by DeMaris

(1991), Hosmer and Lemeshow (2000) and Jaccard (2001), and calculate

the odds ratio for Singleton given simultaneous participation in Ob-

server as ÔRSO = exp[βS + βSO] =0.43.

The explanation for the interaction is found by a qualitative analysis of

the classes in question in the code. A set of seven small classes form

a state machine that controls the global GUI state of the whole ap-

plication. These classes are Singletons and simultaneously Observers

of each other. They were carefully designed early on in the project,

and since the underlying requirements have not changed, they have re-

mained very stable. Thus, their defect rate is also small. This explains

why Singleton and Observer tend towards higher defect rates when

used on their own (odds ratios of 1.35 and 1.55 respectively), but have

a significantly lower defect rate when used together. We would not

expect this interaction effect to be generally valid for other programs.

Since size in KLOC is a continuous variable, the interpretation of the

interaction between a pattern and size yields a set of odds ratios, one

for each chosen value of the size. To determine proper size values and

avoid unjustified extrapolation, we must look at the size distributions

of the classes that participate in the Singleton and Observer patterns;

the histograms are shown in Figure 3.2.

2000150010005000

15

10

5

0

F
re

q
u
e
n
c
y

Size of Singleton classes

2000150010005000

15

10

5

0

F
re

q
u
e
n
c
y

Size of Observer classes

Figure 3.2: Histogram of class sizes, of the Singleton classes (left pane)

and Observer classes (right pane)

The odds ratio for the expected defect rate, for a combination of a given

pattern and a given code size is calculated as ÔR = exp[βpattern +

165

βinteraction × KLOC]. Table 3.10 shows these odds ratios for Singleton

and Observer, for code sizes that correspond to the actual classes in the

CRM5 system.

Singleton Observer

KLOC OR OR

0.1 1.75 1.58

0.25 2.58 1.63

0.5 4.91 1.71

1.0 17.82 1.88

1.5 — 2.07

2.0 — 2.28

Table 3.10: Odds ratios for Singleton and Observer,

for representative class sizes

We can observe that classes that participate in the Singleton pattern are

very sensitive to size. This is partly explained by presence of the small,

stable classes mentioned above. The same effect applies to the Observer

× Size interaction, with the difference that there are more instances of

the Observer pattern than the Singleton pattern (6.7 %, vs. 1.8 % of the

total code, from Table 3.7). This is why the interaction is significant, yet

does not invalidate the main effect related to Observer.

The odds ratio for Observer alone is 1.55 (this corresponds to setting

the size value to 0), which supports our expectation from Section 3.3.1:

Observer is a relatively complicated pattern that is used in situations

with coupling between multiple, nontrivial classes. The higher than

average defect frequency is as expected.

3.5 Threats to validity

In a study such as the present one, there are multiple threats to validity,

both internal and external. Internal validity is concerned with the con-

sistency of the measurements, appropriate use of tools and methods.

External validity concerns the degree to which the data and results are

transferable outside the particular context of the study.

166

One threat arises from the use of an automated tool to recover de-

sign patterns from code, an inherently imprecise and difficult process.

The tool was, therefore, tested and validated, and the results from Sec-

tion 3.3.3 indicate that, in the current study, the tool is sufficiently re-

liable to be used. This means that it has acceptably low false positive

and false negative rates, when applied to the code in this case study.

The classification of false positive and false negatives was performed

by the author together with a senior developer from the company, to

reduce the risk of incorrect classifications.

The choice of the patterns to be analyzed was based partly on their

known structure and expected effects, and partly on their popularity

as determined from surveys of academic literature, discussion groups

and the Web in general.

A second threat is related to the software chosen for analysis, in that

it should be of sufficient size and complexity for patterns and defects

to occur often enough to give statistically valid results. As discussed

in Section 3.4, the pattern Decorator did not fulfill this criterion. No

strictly quantitative conclusions can therefore be drawn regarding Dec-

orator from the current material. The spread of values for Template

Method is an interesting and valid result, given the high number of

occurrences, despite its lack of simple quantitative significance.

The choice of statistical model and its content must also be considered.

Given the size of the data set, a detailed analysis and classification of

each defect is beyond the scope of the study. With a binary outcome

(defect/no defect) and indicator variables for the presence or absence

of patterns, logistic regression is a natural model.

In addition to main effects and two confounders (size and time), all pat-

tern × pattern interaction terms that were actually present in the data

were evaluated. Further interaction terms for patterns versus size were

included, based on intuition and the experience of other workers in the

field, especially Bieman et al. (2001; 2003), who found a strong size ef-

fect. In our case, a size effect was found for two patterns (Observer and

Singleton), linked to a special set of small, stable classes in the code.

The external validity of the study is mainly limited by two factors: the

167

applicability of the tool to other coding styles in other software, and

the usage of design patterns elsewhere. These threats reflect some of

the inherent problems of case studies, where numerous cultural and

technical factors are impossible to characterize completely. The partly

inconsistent results reported by Bieman et al. (2003) are an example.

To some extent these threats can only be addressed by extending the

knowledge base with studies that span multiple systems, cultures and

styles.

The software itself is a long-lived industrial product of considerable

size, thus small size or unrealistically simple design should not be a

threat. It was designed by a team that was aware of Design Patterns in

general, yet had not studied them in great detail. It is to be hoped that

this is representative of commercial software designed with patterns.

The studied defects were identified both as a result of internal pre-

release testing, and from reports from actual users. The study span

of three years ensured that there was, in fact, time to incorporate user

feedback, causing measurable changes to appear in the code.

As argued in Sections 3.3.1 and 3.3.1, we believe it is inherent in the

nature of the Factory and Observer patterns that the former should be

used in simpler, less tightly connected code than the latter. The ob-

served results support this observation. However, only further obser-

vations of other systems will support generalization outside the stud-

ied domain.

The applicability of the pattern extraction tool is fairly easy to check

for any other software system, by performing a validation similar to

the one done in Sections 3.3.3 and 3.3.3. If no major adjustments need

to be made to the recognition algorithms, we may conclude that the

tool is more generally applicable. However, the general applicability

of the tool, or lack of it, is not a significant factor in the applicability of

the results of the present case study, for which the tool was extensively

validated.

168

3.6 Summary, conclusions and future work

3.6.1 Summary of results

We wished to determine whether there is any systematic correlation be-

tween the occurrence of certain Design Patterns and defect frequency in

an industrial product. To analyze the source code, we designed and im-

plemented a tool capable of extracting information about the presence

of selected design patterns from C++ code. The tool analyzed 76×106

LOC in less than 26 hours. The patterns were selected based on sur-

veys of the Web and academic literature, as well as the suitability for

evaluating the tool.

False positive errors (identification of a pattern where none exists) were

determined by inspecting each pattern occurrence identified by the

tool, and varied from 0 % to 15 %. False negative errors (missing a pat-

tern) were estimated statistically from a random sample of classes, and

varied from 2 % to 10 %. These rates compare favourably with other

work in the field. The combination of speed and precision allows the

analysis of large software products over time.

The tool was then applied to a Customer Relationship Management

product, consisting of more than 500 KLOC. Snapshots were obtained

for each week in a three-year period, and analyzed using a logistic re-

gression model. The response variable was the presence of a defect in

the code, and the model terms were the presence of the five patterns,

size and week number, and interaction terms.

Significant correlations were found for the Factory, Observer and Tem-

plate Method patterns. Code related to Factory had a lower defect rate

(63 %) than the code in general, while Observer was correlated with

higher defect rates (155 %). In the case of Singleton and Observer there

were also significant interactions with size, which supports the hypoth-

esis that these patterns tend to be used in complex areas, with more

code and higher defect frequencies. Defect frequency increased with

size for these patterns, especially for Singleton.

Template Method occurred many times in many different contexts, so

the spread of defect frequencies was large and no strong, single conclu-

169

sion can be drawn. However, this illustrates the many uses to which

this pattern can be put, and the different effects it may have. The Deco-

rator pattern did not occur often enough to yield statistically significant

results.

3.6.2 Conclusions

The usage of Design Patterns has been cited as a way to make good

designs easier to develop, even for less experienced developers. As a

corollary, since good design is presumed to lead to lower defect rates

and other benefits, the use of patterns is also expected to lead to lower

defect rates.

However, we find that the reality, at least in the case of the software

studied, is not quite that simple. Well-known Design Patterns have

widely different sizes, complexities and applicability, so that the use of

patterns by itself is no guarantee of few defects.

In any non-trivial software product, there will be areas that have an

irreducible, significant complexity. Unless they are designed and main-

tained very carefully, such areas will have higher defect rates than the

average in the product.

We believe that some patterns, notably Singleton and Observer in our

study, tend to be associated with such complexity. Thus, even the

“proper” use and implementation of these patterns may not be enough

to reduce the defect rate to the general average. However, the appli-

cability of these patterns can serve as a useful warning sign to the de-

velopers: if Observer is found to be the proper solution, then that area

of the software is probably inherently complex and warrants above-

average effort in its design and implementation. As good design re-

sources are always at a premium, it is hoped that these conclusions may

help developers to target their resources on the most beneficial areas.

3.6.3 Future work

Future work is envisioned as an iterative process between tool develop-

ment and code analysis. In its current state our design pattern extrac-

170

tion tool is fast enough to be used on large projects, but it is necessary

to validate it on different kinds of program, from different develop-

ment groups. The Open Source community should be a good source

of projects to analyze, and work is already underway to perform sim-

ilar analyses on a large number of projects. This should result in an

improved tool in terms of applicability to different coding styles. Ex-

tending the number of patterns analyzed is also relevant.

With an improved tool, an analysis similar to the present case study can

be performed, to see whether our results have general applicability. The

existing material can also be reanalyzed for any new patterns added to

the tool.

Further study is possible by calculating relevant metrics for the code,

to see how the presence of design patterns correlates with trends in the

metrics and defect frequencies.

Acknowledgement

The author would like to extend sincere thanks to SuperOffice ASA and

Director of Development Guttorm Nielsen, for granting unrestricted

access to the CRM5 source code. Prof. Erik Arisholm made major con-

tributions to the statistical modelling, and Prof. Dag Sjøberg provided

valuable comments on the style and structure of the paper.

171

172

Bibliography for paper 3

Albin-Amiot, H., Cointe, P., Guéhéneuc, Y. G., Jussien, N., 2001. Instantiat-

ing and Detecting Design Patterns: Putting Bits and Pieces Together. In:

ASE 2001: 16th Annual International Conference on Automated Software

Engineering. IEEE CS Press, San Diego, CA, USA, pp. 26–29.

Antoniol, G., Casazza, G., Di Penta, M., Fiutem, R., 2001. Object-Oriented

Design Patterns Recovery. Journal of Systems and Software 59 (2), 181–

196.

Antoniol, G., Fiutem, R., Cristoforetti, L., 1998. Using Metrics to Identify

Design Patterns in Object-Oriented Software. In: Metrics 1998: Fifth In-

ternational Software Metrics Symposium, 1998. IEEE Computer Society,

Bethesda, Maryland, USA, pp. 23–34.

Badros, G. J., Notkin, D., 2000. A Framework for Preprocessor-Aware C

Source Code Analyses. Software-Practice & Experience 30 (8), 907–924.

Balanyi, Z., Ferenc, R., 2003. Mining Design Patterns from C++ Source Code.

In: ICSM’03: International Conference on Software Maintenance. IEEE

Computer Society, Amsterdam, The Netherlands, pp. 305–315.

Bansiya, J., June 1998 1998. Automating Design-Pattern Identification. Dr.

Dobb’s Journal 23 (6), 20–2, 24, 26, 28.

Bieman, J., Jain, D., Yang, H., 2001. OO Design Patterns, Design Structure,

and Program Changes: An Industrial Case Study. In: ICSM 2001: IEEE

International Conference on Software Maintenance, 2001. IEEE Computer

Society, Firenze, Italy, pp. 580–589.

Bieman, J., Straw, G., Wang, H., Munger, P., Alexander, R., 2003. Design Pat-

terns and Change Proneness: An Examination of Five Evolving Systems.

In: METRICS ’03: Ninth International Software Metrics Symposium,

2003. IEEE Computer Society, Sydney, Australia, pp. 40–49.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., 1996.

Pattern-Oriented Software Architecture. Wiley, Chichester, ISBN: 0 471

95869 7.

Chu, W. C., Lu, C. W., Shiu, C. P., He, X. D., 2000. Pattern-Based Software

Reengineering: A Case Study. Journal of Software Maintenance—Research

and Practice 12 (2), 121–141.

DeMaris, A., 1991. A Framework for the Interpretation of First-Order Inter-

action in Logit Modeling. Psychological Bulletin 110 (3), 557–570.

Florijn, G., Meijers, M., van Winsen, P., 1997. Tool Support for Object-

Oriented Patterns. In: ECOOP ’97: European Conference on Object-

173

Oriented Programming. Vol. 1241 of Lecture Notes in Computer Science.

Springer-Verlag Heidelberg, Heidelberg, pp. 472–495.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns: El-

ements of Reusable Object-Oriented Software. Addison-Wesley, Boston,

MA, USA, ISBN: 0201633612.

Guéhéneuc, Y.-G., Albin-Amiot, H., 2001. Using Design Patterns and Con-

straints to Automate the Detection and Correction of Inter-Class Design

Defects. In: TOOLS 39: 39th International Conference and Exhibition on

Technology of Object-Oriented Languages and Systems, 2001. Santa Bar-

bara, CA, USA, pp. 296–305.

Hosmer, D. W., Lemeshow, S., 2000. Applied Logistic Regression, 2nd Edi-

tion. John Wiley & Sons Inc., New York, USA, ISBN: 0471356328.

Huston, B., 2001. The Effects of Design Pattern Application on Metric

Scores. Journal of Systems and Software 58 (3), 261–269.

Jaccard, J., 2001. Interaction Effects in Logistic Regression. Quantitative ap-

plications in the social sciences. Sage Publications, Thousand Oaks, CA,

USA, ISBN: 0761922075.

Keller, R., Schauer, R., Robitaille, S., Pagé, P., 1999. Pattern-Based Reverse-

Engineering of Design Components. In: ICSE ’99: 1999 International

Conference on Software Engineering. ACM Press, Los Angeles, CA, USA,

pp. 226–235.

Kleinbaum, D. G., 1994. Logistic Regression : A Self-Learning Text. Statistics

in the Health Sciences. Springer-Verlag Heidelberg, New York, ISBN: 0-387-

94142-8.

Kramer, C., Prechelt, L., 1996. Design Recovery by Automated Search for

Structural Design Patterns in Object-Oriented Software. In: Third Work-

ing Conference on Reverse Engineering, 1996. IEEE Computer Society,

Monterey, CA, USA, pp. 208–215.

Larman, C., 2001. Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design and the Unified Process, 2nd Edition. Pren-

tice Hall, Upper Saddle river, NJ, USA, ISBN: 0130925691.

MiniTAB, Inc, 2003. MiniTab 13.32. URL http://www.minitab.com

Neumann, G., Zdun, U., 2002. Pattern-Based Design and Implementation of

An XML and RDF Parser and Interpreter: A Case Study. In: ECOOP ’02:

16th European Conference on Object-Oriented Programming. Vol. 2374 of

Lecture Notes in Computer Science. Springer-Verlag Heidelberg, University

of Mlaga, Spain, pp. 392–414.

174

Perforce, Inc, 2004. Perforce Software Configuration Management System.

URL http://www.perforce.com/

Prechelt, L., Unger, B., 1999. Methodik und Ergebnisse einer Experimen-

treihe über Entwurfsmuster. Informatik - Forschung und Entwicklung

14 (2), 74–82.

Prechelt, L., Unger, B., Tichy, W. F., Brössler, P., Votta., L. G., 2001. A Controlled

Experiment in Maintenance Comparing Design Patterns to Simpler Solu-

tions. IEEE Transactions on Software Engineering 27 (12), 1134–1144.

Rising, L., 1998. The Patterns Handbook. Cambridge University Press, Cam-

bridge, United Kingdom, ISBN: 0521648181.

Schauer, R., Keller, R., 1998. Pattern Visualization for Software Comprehen-

sion. In: IWPC ’98: 6th International Workshop on Program Comprehen-

sion, 1998. pp. 4–12.

Schmidt, D., Stephenson, P., 1995. Experience Using Design Patterns to

Evolve Communication Software Across Diverse OS Platforms. In:

ECOOP ’95: European Conference on Object-Oriented Programming.

Vol. 952 of Lecture Notes in Computer Science. Springer-Verlag Heidelberg,

Århus, Denmark, pp. 399–423.

Scientific Toolworks Inc., 2003. Understand for C++. URL http://www.

scitools.com/

TechExcel, 2004. DevTrack Defect Tracking Tool. URL http://www.

techexcel.com/products/devtrack/dtoverview.html

Vokáč, M., 2005. A Tool for Recovering Design Patterns from C++ Code, and

its Application in a Case Study. Journal of Object Technology, To appear

July/August 2005.

Vokáč, M., Tichy, W., Sjøberg, D. I. K., Arisholm, E., Aldrin, M., 2004. A

Controlled Experiment Comparing the Maintainability of Programs De-

signed with and Without Design Patterns: A Replication in a Real Pro-

gramming Environment. Empirical Software Engineering 9 (3), 149–195.

175

176

Paper 4

An efficient tool for recovering design patterns

from C++ code

This paper has been accepted for publication in the Journal of Object

Technology, and is tentatively scheduled to appear in July 2005. The

text included here is the finally accepted version.

177

178

An efficient tool for recovering Design Patterns from C++ Code

Marek Vokáč

Software Engineering Department, Simula Research Laboratory, Oslo, Nor-

way

Abstract

Design Patterns are informal descriptions of tested solutions to recurring

problems. Most design tools have little or no support for documenting the

presence and usage of patterns in code. Reverse engineering is therefore often

required to recover Design Patterns from code in existing projects. Knowl-

edge of what Design Patterns have been used can aid in code comprehension,

as well as support research.

Since pattern descriptions are abstract and informal, they offer no algorith-

mic translation into concrete code. Some patterns prescribe class structures

that are easy to recognize, while others lead to structures that are difficult or

impossible to recognize.

This work presents a tool that can recover five different design patterns from

C++ code with high precision and at a speed of 3×106LOC/hr. This makes it

suitable for analysis of large (multi-millon LOC) systems.

4.1 Introduction

Software Design Patterns, as first formalized by Gamma et al. (1995),

have become popular in the object-oriented software community. Some

of the patterns have been incorporated into widely used architectures

and frameworks. Examples of this are the Iterator pattern in the C#

language (coupled to the foreach keyword), the Observer pattern in

event-based user interfaces, and the Factory pattern in Microsoft COM,

MFC and J2EE.

Recovery of Design Patterns from existing code is important in several

situations. Code maintenance should be made easier if any patterns

used during the design can be recovered. Also, empirical research on

the effects of using Design Patterns is severely limited if it cannot make

use of existing code bases.

179

Hopefully, the emergence of integrated development environments

that fully support UML modelling and pattern application will reduce

the need for reverse-engineering tools; however, maintenance of code

designed without such support will remain significant for many years.

To support our ongoing research into correlations between the use of

Design Patterns and defect frequency, we needed a tool to extract pat-

terns from a large amount of C++ code. A survey of academic literature

uncovered a number of recovery tools, but none of them were docu-

mented to be able to handle the patterns and code sizes we needed. We

therefore created and validated our own tool for this purpose.

The tool looks for structural signatures, i.e., class and method struc-

tures that result from the implementation of certain design patterns. We

developed a semi-formal, graphic notation to describe Design Pattern

structures in greater detail than the original diagrams given by Gamma

et al., but not so rigid as to overspecify and thereby miss recovery of

implementations that are not identical to the “ideal” structure.

This paper is organized as follows: Section 4.2 discusses existing tools,

as documented in the academic literature. Pattern structures and our

diagrammatic notation for expressing them are described in Section 4.3.

The goals and construction of our tool are in Section 4.4, and its per-

formance, recovery and precision on a 500 000 LOC system are in Sec-

tion 4.5. Section 4.6 concludes.

4.2 Existing tools and related work

In this section we summarize related pattern-extraction tools. Our

starting point is executable code, not UML designs or other specifica-

tions.

The justification for this starting point is as follows. A Design Pattern

is a description, using prose and semi-formal diagrams, of a way to

structure classes in a program. However, the ultimate expression of

Design Patterns is in executable code, whether generated from a model

or by hand, and the code is the ultimate reference (as opposed to UML

180

models or other documents, which tend to become out of date if not

used with good tool support, or rigorously maintained). Our survey of

related work is thus restricted to tools that use code as their input.

It is in the very nature of Design Patterns that they are abstract, general

prescriptions of solutions. Their translation into actual code necessarily

involves judgement, and is not a task that can be performed mechani-

cally without regard to context. This is especially true when analyzing

existing code, the design of which was inspired by patterns yet did not

have “compliance” with pattern specifications as its goal. This means

that we should not expect any tool to recover all patterns with 100%

precision.

An early work was by Kramer and Prechelt (1996). Patterns were

drawn in an OMT design tool and translated into Prolog rules; source

code was parsed using the Paradigm Plus tool and converted into Pro-

log facts. Then, queries were run to determine what facts matched the

rules, ie., what patterns were present in the code.

The parsing tool had significant limitations. It did not extract infor-

mation that would have been useful, such as whether a method is a

constructor, or whether a class is abstract or concrete. Further, the tool

looked only at header files, and thus had no information on the func-

tion call hierarchy. This made recovery of patterns more difficult, since

essential parts of the signature of a pattern that depended on these con-

cepts could not be expressed. Nevertheless, the tool achieved reason-

able recall and precision rates on source code of moderate size (150–350

classes).

Florijn et al. (1997) constructed a tool that was integrated in a Smalltalk

environment, which supported development at several abstraction lev-

els, including that of Design Pattern. With this tool, it is possible to cre-

ate new classes as instances of patterns, connect existing classes with

patterns and roles, and check whether pattern invariants are being up-

held by classes in the code. The real-life test example cited involves

about 150 classes.

Bansiya (1998) presented a tool in 1998 that used the Microsoft MSVC

compiler to parse the code, and relied on the “browse information”

181

database generated. The tool seems to have been based on a struc-

tural rule-based matching method, but there is little information on its

precision, or its ability to handle large systems.

Antoniol et al. used a different approach (Antoniol et al., 1998). The

code was analysed in terms of tuples of classes and their relations, and

metrics were used to reduce the number of candidate classes and avoid

the combinatorial explosion.

The metrics calculated were the number of attributes and operations,

further divided into public, private and protected; the number of asso-

ciation, aggregation and inheritance associations for each class; and the

total numbers of attributes, methods and relations.

Using the metrics, classes were eliminated that did not show the “right”

signature for the pattern in question, such as inheritance or associations

that are part of the given patterns’ structure. In the final stage, the

exact pattern signature was sought among the classes that survived the

metrics selection process.

Their method was tested on public-domain and industrial software in

the 5 000–50 000 LOC range. It performed well in terms of speed (min-

utes), but did not achieve high precision. In the industrial software

analyzed, there were so few pattern instances that it was difficult to

judge the precision of the process.

The method has been further developed and was last presented in

2001 (Antoniol et al., 2001); however, the precision of the system is still

quite low (3%–50%).

A potential weakness is the fact that some metrics, such as inheritance,

are not reliable indicators of a pattern structure. For instance, the Tem-

plate Method pattern specifies a base class with a template method,

and concrete subclasses that override and implement the primitive op-

erations. However, this whole hierarchy might well be embedded in a

larger context, so that the abstract base class is itself a subclass of one or

more classes. Thus, it would be incorrect to conclude that a class has to

be at the top of the hierarchy to be at the root of the Template Method

pattern. However, it is correct to require that the subclass in the Tem-

182

plate Method really be a subclass; though it may be deeper than a direct

subclass of the base class.

Keller et al. (1999) designed a pattern extraction mechanism for use

within a larger reverse-engineering system. Based on the structure of

the pattern, they constructed an appropriate query that searched their

metadata repository for corresponding occurrences. Performance fig-

ures are not given, but one of the systems tested consisted of more than

470 000 lines of code. This work is a continuation of earlier work by

Schauer and Keller (1998).

An interesting point is that there are some patterns that are difficult

or impossible to recover, because their structural signature is weak or

variable. The Bridge pattern is cited as an example; while the original

definition of Bridge specifies a certain combination of inheritance and

aggregation associations, in practice these are not always followed. Re-

laxing the criteria to accommodate this causes large numbers of false

positives, while keeping them strict, means that design constructs in-

tended to work like Bridge are missed. We believe this is an inherent

property of the pattern, rather than of any particular approach to re-

covery.

Albin-Amiot et al. (2001) have proposed and implemented in prototype

a system that searches for, and recognizes, pattern signatures in Java

code. Their system relies on a constraint solver, which attempts to

solve the problem given by matching the actual code structure to the

structure of the design pattern. Their system can recognize partial or

distorted implementations and can even recommend possible refactor-

ings.

They do not state running times or give examples of the application

of their system to non-trivial systems. However, they state that they

intend to test their system on the package JHOTDRAW; a companion

paper (Guéhéneuc and Albin-Amiot, 2001) states that this package “...

contains more than 125 classes and identifies several design patterns”.

Perhaps the most promising method to date for design pattern recovery

from large-scale projects is that of Balanyi and Ferenc (2003). They use

a reverse engineering framework to convert C++ code into metadata

183

(termed Abstract Semantic Graph), and express patterns in an XML-

based language. They then perform a multi-step algorithm to identify

candidate class structures, match them to the pattern descriptions, and

filter out mismatches. One of their major contributions is to look at

information from function bodies, such as function calls and object cre-

ations, in addition to the more traditional static structure.

They seem to be the only group so far that has tested a method on

million-line code collections, and they give running times for extraction

of different patterns. In two large projects of 1 200 KLOC and 1 500

KLOC size, they found about 440 and 520 pattern instances in total, in

five and nine hours’ running time. However, the time spent on code

parsing is not given. They cite fairly low rates of false positives (falsely

indicating the presence of a pattern), but do not give any evaluation of

false negatives (failing to identify a pattern that is actually present).

4.3 Pattern structures and descriptions

As a first level of abstraction from concrete code, we adopted an entity-

reference model, similar to the class/relation tuples used by Antoniol

et al. (1998). An entity is anything that is not a language keyword or

operator, i.e., any named class, variable, method, macro or parameter.

A reference links two entities, and is of a certain type, such as “Calls”,

“Is declared by” or “Overrides”. Entity types also express attributes

such as “virtual” or “public”. During the parsing step, the code to be

analyzed is reduced to a set of entities interconnected by multiple ref-

erences.

Using these two concepts, we constructed a graphic notation to define

Design Patterns at a sufficient level of detail for the analysis. In our

view, formal, rigorous definitions as used by France et al. (2004), are not

suitable in this context, since our aim is to be able to recover patterns

that have been applied imprecisely. Further, the “rigorous” application

of a pattern may simply not be the best design decision in every case,

and we expect software designers to exercise judgement.

184

In its first version, our tool recovers the patterns Observer, Decora-

tor, Factory, Singleton and Template Method. Our concepts for pattern

structures, and the structural signature left imprinted in the final code,

are discussed for the Template Method and Observer patterns. They

are good illustrations of both simple and more complex problems. We

should note that during most of its running time, our tool performs

parsing and preparatory indexing that is independent of the actual pat-

terns to be extracted. Adding new patterns is thus fairly easy, and does

not require the whole parsing process to be re-run.

4.3.1 Template Method

This is a relatively simple Design Pattern. It is used in situations where

the major flow of a process or algorithm is given and is reusable, but

there may be differences in the detailed steps. In this case, the algo-

rithm is implemented in a base class, and calls overridable methods

for the detail steps. These methods may be abstract or have a default

implementation in the base class. Derived classes provide their own

implementations of these methods as required, thus customizing the

algorithm to their particular needs.

+TemplateMethod()

#PrimitiveOperation1()

#PrimitiveOperation2()

AbstractClass

#PrimitiveOperation1()

#PrimitiveOperation2()

ConcreteClass

Calls PrimitiveOperation1 and PrimitiveOperation2

Figure 4.1: Structure of Template Method, from Gamma et al. (1995).

Gamma et al. use an informal, UML-like notation with explanatory

prose to describe the structure of this design pattern, as shown in Fig-

ure 4.1. We see that it involves an abstract class and a concrete class,

and one or more “primitive” operations that are called by the template

method in the base class; these methods are overridden in the concrete

185

class.

Some elements of this structure diagram should not be taken too liter-

ally. For instance, the inheritance may span multiple levels; there may

be more than one template method in the abstract class, and concrete

classes will not always override all of the primitive operations.

Our translation into the entity/reference model modifies and formal-

izes the structure to take into account these properties.

Structural signature for Template Method

Type: Class

(Role: template class)

Override

Type: Class

(Role: concrete class)

Ancestor

Type: Member Function

(not constructor)

(Role: template method)

Declare

Call

Type: Member Function

(not constructor)

(Role: primitive operation) Declare

Type: Member Function

(not constructor)

(Role: primitive operation)Declare

[not equal]

Figure 4.2: Structural signature of Template Method

In our notation, boxes represent entities such as classes or methods, and

arrows between the boxes represent references. The top line of text in

a box denotes the entity type, and the bottom line denotes the role that

the entity plays in the pattern. Restrictions are placed in the middle of

the box. Similarly, the text on a reference defines the reference kind.

The signature diagram for the Template Method pattern is shown in

Figure 4.2, and expresses the expected structural signature in a more

complete way than the original notation. Our diagrams can be trans-

lated by hand or semi-mechanically into executable queries against an

entity-reference database derived from actual code.

The two main entities in the signature diagram are the template class

and the concrete class (shaded boxes). The template class is a (possibly

indirect) ancestor of the concrete class, and may itself be a subclass of

186

some other class (this is not specified and thereby not restricted). The

template class declares at least two member functions, which have the

additional restrictions of not being the constructor. We require a “call”

reference from the template member function to one or more primitive

operation functions, and we require the functions to be distinct.

The concrete class must declare one or more member functions that are

also not constructors, and which override the template class methods

that act as primitive operators.

4.3.2 Observer

The Observer pattern illustrates how it is possible to implement a de-

sign pattern in at least two, radically different ways. The core concept is

simple: a class (the observer) may observe changes to another class (the

subject), and react to those changes in some way; there may be multiple

types and instances of Observers for any Subject.

The differences in implementation are related to the way in which no-

tifications from subjects to observers are implemented. In the classic,

closely coupled model, described in the original pattern, each observer

keeps track of its subjects and directly notifies them of changes. The

structure described in Gamma et al. (1995) and shown in Figure 4.3 por-

trays the closely coupled model.

+Attach(in Observer)

+Detach(in Observer)

+Notify()

Subject

+Update()

Observer

+GetState() : subjectState

+SetState()

-subjectState

ConcreteSubject

+Update()

-observerState

ConcreteObserver

foreach o in observers {

 o.Update()

}

observerState = subject.GetState()

1

-observers

*

+Update()

-observerState

Class1

Figure 4.3: Structure of Observer, from Gamma et al. (1995).

In this model, there are base classes for the concepts of Subject and

Observer, and concrete classes derived from them. The subject class

maintains references to its current set of observers, and the observers

187

call the subject directly to retrieve information. It is explicitly specified

that the subject state is not part of the notification message, but must be

retrieved separately.

However, the Observer pattern is also known under the name “Publish-

Subscribe”, which points us to a different, loosely coupled model for its

implementation. In this model there is a third party, a broker, that keeps

track of subjects, observers and notifications. The concrete subject class

is relieved of this task and does not have to be a subclass of a common

“subject” base. The observer class will, in most instances, still have

some relation to the subject (it is, after all, interested in what happens

to the subject) but its registration interaction will be with the broker.

There are other ways of communicating as well. Buschmann et al. (1996)

describes several possible schemes. The Reactor pattern (Schmidt,

1994) describes an inter-process variant with Singleton multiplexers

and demultiplexers in the sending and receiving processes. A similar

scheme, though without the multiplexing, appeared in the OMG Event

Service Specification Object Management Group (1995). It involves a

proxy publisher and a proxy subscriber to hide the process boundary,

and an event channel to transfer the notifications. Varying degrees of

buffering, asynchronicity and further decoupling are also possible.

The tightly coupled and loosely coupled observer implementations

have quite different signatures, as seen in Figure 4.4. The loosely cou-

pled model involves a total of nine entities and 12 references, while the

tightly coupled model uses six entities and seven references. Most im-

portantly, we will not recognize a tightly coupled observer while look-

ing for a loosely coupled one, and vice versa.

This range of potential implementations is a fundamental and intended

strength of the concept of Design Patterns; the designer is able to im-

plement a pattern in the way that best fits the context and problem

at hand. However, by the same token, that same range of potential

implementations makes it much more difficult to reconstruct patterns

from code, unless there are some “standard” implementations whose

structural signatures will match most of the actual usage. As a result,

it must be made clear regarding a particular reverse-engineering tool

188

what variants of patterns it is designed to recover.

189

Type: Class

(Role: observer base)

Type: Public Function Virtual

(Role: observer update)Declare

Type: Class

(Role subject)

Type: Public Function

(Role: subject data return)

Declare

Type: Class

(Role: observer)

Type: Public Function Virtual

(Role: observer update)Declare

Ancestor Override

Call

Call

Structural signature for tightly coupled Observer

Structural signature for loosely coupled Observer

Type: Class

(Role: broker call sink)

Type: Class

(Role: observer)

Type: Public Function

[not constructor]

(Role: observer update)

Declare

Ancestor

Type: Function

(Role: observer registration)

Declare

Use Ptr
Type: Class

(Role: broker)

Type: Public Function

[not constructor]

(Role: registration)

Declare

Call

Type: Function

[not constructor]

(Role: call)

Declare

Type: Class

(Role: subject)

Type: Public Function

[not constructor]

(Role: subject update)

Class to Class Use Call

Declare

[different]

Class to Class Call

Observer

Subject

Figure 4.4: Structural signatureof Observer, tightly and loosely coupled.

190

4.3.3 Language-specific features

Different languages implement concepts in different ways. One con-

cept that is central to many Design Patterns is that of aggregation, gen-

erally implemented as a collection; a set of objects or references to ob-

jects. The Composite pattern is a typical example, where each com-

posite object may contain or reference any number of child objects. To

recognize a Composite, we therefore need to start by recognizing a col-

lection or aggregation relation.

In C++ in general, this is almost impossible. A C++ pointer can point

to one object, or it can point to an array of objects; but there is no way

to know which without analyzing the code in great detail.

Before the advent of the Template mechanism and the Standard Tem-

plate Library SGI (2004), every developer or group had to implement

its own data structures, so there was no generally accepted standard

(unlike Java and its Collections hierarchy of objects). To make matters

even worse, macros in C++ can be used to perform almost any textual

substitution, making parsing almost impossible. An example of this is

a case where a Container base class is inherited through a macro that

defines a subclass; correctly parsing and recognizing this as a collection

is beyond most tools (Badros and Notkin, 2000).

In other languages the situation is simpler. Java has a well-defined set

of container classes Sun Microsystems, Inc (2004), and also does not

have the fine division between embedded objects, references and point-

ers present in C++. Thus, it is much easier to detect collections with

reasonable accuracy in Java.

In C# there is an IEnumerator interface in the standard library set,

which encourages developers to implement their own iterator concepts

wherever appropriate. It is coupled to the foreach keyword in the lan-

guage Microsoft, Inc (2004), yielding an easily recognized, simple and

elegant syntax for traversal of any array or collection.

Our tool and the exact structural signature for the chosen patterns were

designed in the context of C++, and to some extent adjusted for the

programming style used in the software analyzed in the case study.

191

However, the underlying concepts are transferable to other, similar lan-

guages.

4.4 Tool goals and design

We formulated the following goals for a pattern recovery tool:

• It must be possible to describe a structural signature of a pattern,

and to extract from a C++ code base the set of classes that corre-

spond to this signature.

• The tool must be flexible, because some design patterns have

complicated signatures that are not easily expressible as simple

rules. It must be reasonably easy to express a structure, so that

the specification can be checked, revised and debugged.

• The tool must scale extremely well, and be able to handle

amounts of code in the 108 LOC range with running times in the

order of hours, or at least within a weekend. Preferably, much of

the processing time should be spent on data preparation that is

independent of what patterns are being sought, so that the addi-

tion of new patterns does not force a re-run of the whole process.

If possible and when necessary, the method should lend itself to

optimization using parallel hardware (storage, CPU) or cluster-

ing.

• The input data should be in the form of “untreated” code files,

i.e., whatever structure the source project is already in. Output

should be in a form that is easily transferable to statistical pack-

ages for further analysis.

4.4.1 Tool construction

Due to the lack of a satisfactory, off-the-shelf tool, we decided to con-

struct our own. The tool was built using several sub-components to

handle different stages of the process. During our research, it satisfied

all the goals, with the exception of parallel processing, which was not

pursued due to lack of suitable hardware.

192

Source

fileSource

fileSource

fileSource

file

Parsing
Meta-

data
Storage

SQL database Indexing Prepared

database

Design Pattern

occurrences
VC informationVersion Control

system
Extraction

Statistical

analysis

Figure 4.5: Outline of the structure extraction tool. The process starts at

the lower left.

Figure 4.5 shows an outline of how our tool is constructed. The first

stage consists of extraction of code snapshots from a Version Control

System (VCS). If we only want to perform a single analysis of a system,

this stage can be performed manually (and does not require the pres-

ence of a VCS at all). However, for analyses of trends over time we need

to take multiple snapshots, one for each time point we wish to analyze.

The resulting snapshot is a collection of C++ source files, both header

and class body. The method makes no assumptions as to the location

of classes or correspondence between classes and files, but since the

VCS generally works at the file level, analysis becomes simpler if the

convention of “one class, one file pair” is followed.

The source files are parsed using a commercial tool called UNDER-

STAND FOR C++ (Scientific Toolworks Inc., 2003). This tool is flexible

and scalable, and parses C++ code into metadata. Its main shortcoming

is that it does not currently handle templates (generics), and this causes

some problems later on with design patterns that rely on collections.

The output from UNDERSTAND is a file, in proprietary format, that con-

tains mainly two kinds of data: entities and references. An entity is any

named concept that is not a keyword, for instance a class, variable, type

or file. A reference is a link between two entities, such as “declares”,

“calls”, or “dereferences”. Both entities and references are classified

193

into predefined kinds.

The “storage” stage of the processing transfers the entity and reference

data from the proprietary UNDERSTAND format into an SQL database,

without materially changing the data. The database contains the fol-

lowing: (i) tables that correspond to the entity and reference concepts,

and (ii) supporting tables for entity and reference kinds, and links to

files and metrics.

The tables are then indexed. Insertion of large amounts of data is much

faster if there are no indexes, so index generation is postponed until

data loading is completed. During the indexing process, some extra

reference kinds are computed in addition to those generated by Un-

derstand. To optimize performance, the database schema is slightly

denormalized by converting some relations (such as whether an entity

is a class member function) into attributes directly in the entity table.

At this stage, the database is ready to perform recognition of structural

design patterns. The recognition is actually done by a series of SQL

statements designed to look for the given structure; a structural signa-

ture translates quite readily into one or more select statements. Com-

plicated or irregular structures may be recovered by chaining multiple

SQL statements in a stored procedure. This provides more expressive

power than single statements, and also provides an opportunity for

optimizing performance where necessary. The results are stored in in-

termediate tables.

Metadata is also extracted from the VCS, in the form of information

about submitted changes. This information is added to the database

with the code metadata, which enables us to combine it with the class

structure and see how it evolved.

Finally, the results are condensed and transferred to a statistical pack-

age for further analysis. An example of such analysis is to gener-

ate indicator variables for each pattern, and use logistic regression to

look for correlations between changeability and pattern membership

for classes.

194

4.5 Tool performance, recovery and precision

4.5.1 Performance

The tool was used to analyze a Customer Relationship Management

system, written in C++. Table 4.1 gives some size metrics for the prod-

uct.

Metric Value

Total lines 1 114 092

Lines of code (LOC) 505 367

Number of classes 2 047

Number of code files 2 809

Number of methods 30 823

Declarative statements 150 685

Executable statements 194 625

Table 4.1: Descriptive metrics for SuperOffice CRM5

The system consisted of approximately 3 700 files (including scripts, re-

sources, graphics, etc), totalling 90 MB. However, as our study intended

to analyze the system’s evolution over time, a total of 153 weekly snap-

shots were extracted from the VCS. The snapshots grew slightly over

time as code was added to the system; in sum, they consisted of about

500 000 files totalling 14 GB.

The pattern extraction tool was applied to each snapshot, to parse all

the code, load the metadata into the SQL Server, index it and extract

Design Patterns. Typical running times are shown in Figure 4.6. Each

snapshot had its own, preallocated empty database in the server. Anal-

ysis of all the snapshots, 76×106 LOC, took slightly less than 26 hours

on a 2.8 GHz PC with 4 GB of RAM (max. 800 MB actually in use) and

standard IDE disk drives.

Table 4.2 summarizes the frequency of occurrence of the patterns in the

code. Participation of a class in a pattern is not a simple 1:0 or 1:1 rela-

tion, as it is quite possible for a class to participate in multiple patterns.

Our tool considers each pattern separately, but since the entities that

195

Running time

Extract Patterns

00:00:39; 7 %

Index tables

00:01:09; 13 %

Load to SQL

00:02:33; 28 %

Parse code

00:04:46; 52 %

Figure 4.6: Length and phase distribution of running times for the Pattern

recognition tool, on 500 000 LOC.

represent classes in the metadata have unique identifiers, it is easy to

identify classes that participate in more than one pattern.

Patterns Occurrences %

No Pattern 183 634 77.5 %

Factory 20 237 8.5 %

Singleton 3 331 1.4 %

Observer 16 061 6.8 %

Template Method 5 381 2.3 %

Decorator 1 513 0.6 %

Factory + Observer 612 0.3 %

Factory + Singleton 2 279 1.0 %

Observer + Singleton 2 390 1.0 %

Observer + Template 953 0.4 %

Factory + Observer + Singleton 485 0.2 %

Table 4.2: Frequencies of pattern occurrences, and percentage of

code covered by the patterns

196

4.5.2 Error rates

Since a Design Pattern is an informal specification of a recommended

structure, it will be translated into program code differently in differ-

ent projects. Any discussion of error rates must, therefore, be seen in

relation to the application of the method to a particular set of software

artifacts.

It is also necessary to define exactly what we mean by an instance of a

certain Design Pattern. Consider Factory as an example: one Factory

class may have methods to create one or more Product classes. Should

we count every combination of Factory and Product as an instance, or

should one Factory class count as a single instance, regardless of the

number of products? Similar situations occur in most patterns, since

they specify relationships between multiple classes.

In our evaluations, we have adopted a simple definition, according to

which one Factory class counts as a single instance. Similarly, we count

one instance of the Observer pattern for every Subject; one Template

Method for each template method; one Decorator for each Decorator

class; and one Singleton for each Singleton class.

It was necessary to adjust the pattern-recovery tool for two particular

patterns: Observer and Decorator. The Observer pattern can be imple-

mented in two different ways, as discussed in section 4.3. The “classic”

structure specifies that each Subject should keep track of its Observers

directly, using a collection of object references. An alternative approach

is to use a generalized message broker to handle the relations between

subjects and observers, and this is the approach adopted globally in the

studied code. The tool was adapted to this Subject/Broker/Observer

structure.

For Decorator, a related problem exists, that of aggregation (see sec-

tion 4.3.3). The tool was adapted to the kind of aggregation generally

used in studied code.

197

4.5.3 False positives

The rate of false positives was determined by manually examining all

detected instances of all patterns. The results for all patterns are given

in Table 4.3.

Pattern Instances False Error rate

Factory 53 8 15.1 %

Singleton 45 0 0.0 %

Observer 20 3 15.0 %

Template Method 163 2 1.2 %

Decorator 9 0 0.0 %

Table 4.3: False positives

Most of the false positives identified for the Factory pattern were

classes that used inner (nested) classes. From the outside this looks

like a Factory instance, since the inner class is created by the outer class

and by nothing else. However, this usage does not correspond to the

intent of Factory, so it was classed as a false positive. It is feasible to add

the condition “product class must not be nested within factory class” to

the structural signature for Factory in a refined version of the rules.

In the Observer cases, we are dealing with a “loosely coupled” ver-

sion of Observer, in which all notifications are handled by a centralized

message broker class. This differs somewhat from the classical, simple

Observer pattern, in which every Subject keeps track of its Observers

separately. There are other forms of interaction through the Message

Broker than just those that accord with the Observer pattern, and the

three false positives are such cases. Since the structure of the pattern is

already quite complex, further refinement is difficult without risking a

greater number of false negatives.

The structure for the Template Method allows for multiple levels of

inheritance, and does not require more than one call to an underlying,

virtual primitive method to consider the caller a parent method. It is a

matter of taste whether one would want to tighten the definition, i.e.,

to demand that there is more than one implementation of the primitive

198

method, or more than one primitive method for each template method.

The number of false positives would most probably decline, but the

number of false negatives might increase.

Decorator has a somewhat problematic structure, in that it contains an

aggregation (the set of Decorators for one decorated class) that can be

implemented in many ways. The signature was adapted to the known

kind of aggregation implementation in this code, and so we should not

take the zero error rate as being guaranteed in a different setting. Also,

false negatives are more probable for this pattern.

Singleton is a pattern that is fairly easy to recognize, and so the low

false positive rate is as expected.

4.5.4 False negatives

To determine the actual rate of false negatives, we would need to evalu-

ate all classes and find all cases in which a class participates in a pattern

but has not been detected by the tool. With more than 2 000 classes this

is not realistically possible.

Instead, we chose to evaluate a random sample of classes, to get an

estimate of the false negative rate. Judging from prior knowledge of

the code (the author previously served as a developer and architect for

the studied product), a low rate of false negatives was expected. To

calculate the necessary sample size, the following criteria were set:

Required power: 90%. Hypothesized proportion (false negative rate):

20%. Alternative proportion (rate to be tested for): 10%.

This yielded a required sample size of 109.1 To guard against randomly

choosing classes that are trivially small or otherwise nonrepresentative,

the actual sample size was increased to 125.

Classes were chosen using a uniformly distributed random number

generator. The chosen classes covered all major modules of the pro-

gram. Figure 4.7 shows the distributions of class sizes, for the full sys-

tem and the sample.

1. MiniTAB (MiniTAB, Inc, 2003) version 13.32 was used for all statistical calculations.

199

40003000200010000

500

400

300

200

100

0

LOC

N
u
m
b
e
r
o
f
c
la
s
s
e
s

40003000200010000

70

60

50

40

30

20

10

0

LOC

N
u
m
b
e
r
o
f
c
la
s
s
e
s

Figure 4.7: Histogram of class sizes, of the full system (left pane) and 125-

class sample (right pane)

Out of the 125 classes inspected, a total of nine were false negatives.

Of these, one was part of a Decorator, one an Observer and the rest

were Template Methods (six of the seven were actually part of the same

instance of Template Method, missed due to macros in the code that hid

the virtual method declarations).

From these observations, we calculate the upper bound of a 95% con-

fidence interval for the proportion of false negatives. The results are

given in Table 4.4.

Pattern Nfalse 95% CI P

Factory 0 2.3 % 0.000

Singleton 0 2.3 % 0.000

Observer 1 3.7 % 0.000

Template Method 7 10.3 % 0.000

Decorator 1 3.7 % 0.000

Table 4.4: False negatives, from code sample

When interpreting these results, we must keep in mind that they apply

to the studied code only. Given the number of possible ways to imple-

ment the structure described by a pattern, the validity of the tool must

be tested for each new coding style.

200

4.6 Summary and Future work

We have successfully built and validated a tool that efficiently recovers

selected Design Patterns from C++ code. The tool was used to analyze

a 500 000 LOC commercial system. During processing of historical data

from the VCS, the tool evaluated a total of 76×106 LOC.

The tool is based on descriptions of structural signatures associated

with the chosen Design Patterns. The signatures are described using

semi-formal diagrams, which can be translated into queries mechani-

cally, or hand-coded in the case of complicated or irregular structures.

The code to be analyzed is parsed into metadata using a commer-

cially available tool, and this metadata is placed in a relational database

where the queries are executed.

The tool has been empirically validated to have a high rate of recovery

(few false negatives) and precision (few false positives). However, vali-

dation has been performed only on one major set of code. Since Design

Patterns are usually not mechanically applied and translated into con-

crete code, it is necessary to revalidate the tool when applying it to new

software.

Most of the tool’s running time is spent on tasks that are independent of

the specific patterns recovered. This, combined with its speed, means

that adding further patterns is relatively straightforward, and can be

done while using a full code base and not just trivial examples.

We plan to pursue the tool in four possible directions:

• Add more patterns—many of the patterns in Gamma et al. (1995)

are candidates, though not patterns such as Bridge, which seem

inherently to leave a very imprecise signature.

• Define a UML Profile for our pattern description notation, and

use a code generator to transform pattern structure diagrams into

SQL queries

• Validate the tool on more software—the Open Source community

should be a good source of nontrivial C++ software.

• Extend the tool to other languages—since the first stage is to

translate from C++ into an abstract entity-reference model, an

201

equivalent parser for other languages can be substituted. While

it may be unrealistic to find another parser with exactly the same

output, the entity-reference model is so general that it should be

easy to transform other formats into it.

202

Bibliography for paper 4

Albin-Amiot, H., Cointe, P., Guéhéneuc, Y. G., Jussien, N., 2001. Instantiat-

ing and Detecting Design Patterns: Putting Bits and Pieces Together. In:

ASE 2001: 16th Annual International Conference on Automated Software

Engineering. IEEE CS Press, San Diego, CA, USA, pp. 26–29.

Antoniol, G., Casazza, G., Di Penta, M., Fiutem, R., 2001. Object-Oriented

Design Patterns Recovery. Journal of Systems and Software 59 (2), 181–

196.

Antoniol, G., Fiutem, R., Cristoforetti, L., 1998. Using Metrics to Identify

Design Patterns in Object-Oriented Software. In: Metrics 1998: Fifth In-

ternational Software Metrics Symposium, 1998. IEEE Computer Society,

Bethesda, Maryland, USA, pp. 23–34.

Badros, G. J., Notkin, D., 2000. A Framework for Preprocessor-Aware C

Source Code Analyses. Software-Practice & Experience 30 (8), 907–924.

Balanyi, Z., Ferenc, R., 2003. Mining Design Patterns from C++ Source Code.

In: ICSM’03: International Conference on Software Maintenance. IEEE

Computer Society, Amsterdam, The Netherlands, pp. 305–315.

Bansiya, J., June 1998 1998. Automating Design-Pattern Identification. Dr.

Dobb’s Journal 23 (6), 20–2, 24, 26, 28.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., 1996.

Pattern-Oriented Software Architecture. Wiley, Chichester, ISBN: 0 471

95869 7.

Florijn, G., Meijers, M., van Winsen, P., 1997. Tool Support for Object-

Oriented Patterns. In: ECOOP ’97: European Conference on Object-

Oriented Programming. Vol. 1241 of Lecture Notes in Computer Science.

Springer-Verlag Heidelberg, Heidelberg, pp. 472–495.

France, R., Kim, D.-K., Ghosh, S., Song, E., 2004. A UML-Based Pattern Speci-

fication Technique. IEEE Transactions on Software Engineering 30 (3), 193–

206.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns: El-

ements of Reusable Object-Oriented Software. Addison-Wesley, Boston,

MA, USA, ISBN: 0201633612.

Guéhéneuc, Y.-G., Albin-Amiot, H., 2001. Using Design Patterns and Con-

straints to Automate the Detection and Correction of Inter-Class Design

Defects. In: TOOLS 39: 39th International Conference and Exhibition on

Technology of Object-Oriented Languages and Systems, 2001. Santa Bar-

bara, CA, USA, pp. 296–305.

203

Keller, R., Schauer, R., Robitaille, S., Pagé, P., 1999. Pattern-Based Reverse-

Engineering of Design Components. In: ICSE ’99: 1999 International

Conference on Software Engineering. ACM Press, Los Angeles, CA, USA,

pp. 226–235.

Kramer, C., Prechelt, L., 1996. Design Recovery by Automated Search for

Structural Design Patterns in Object-Oriented Software. In: Third Work-

ing Conference on Reverse Engineering, 1996. IEEE Computer Society,

Monterey, CA, USA, pp. 208–215.

Microsoft, Inc, 2004. C# Programmer’s Reference: Foreach, in. URL

http://msdn.microsoft.com/library/default.asp?url=/library/

en-us/csref/html/vclrftheforeachstatement.asp

MiniTAB, Inc, 2003. MiniTab 13.32. URL http://www.minitab.com

Object Management Group, 1995 1995. CORBAServices: Common Object

Services Specification.

Schauer, R., Keller, R., 1998. Pattern Visualization for Software Comprehen-

sion. In: IWPC ’98: 6th International Workshop on Program Comprehen-

sion, 1998. pp. 4–12.

Schmidt, D. C., 1994. Reactor: An Object Behavioural Pattern for Concurrent

Event Demultiplexing and Event Handler Dispatching. In: Coplien, J. O.,

Schmidt, D. C. (Eds.), PLoP 94. Addison-Wesley, pp. 529–545.

Scientific Toolworks Inc., 2003. Understand for C++. URL http://www.

scitools.com/

SGI, 2004. Standard Template Library Programmer’s Guide. URL http://

www.sgi.com/tech/stl/

Sun Microsystems, Inc, 2004. Java API Documentation: Interface

Collection. URL http://java.sun.com/j2se/1../docs/api/java/util/

Collection.html

204

Complete bibliography

The following bibliography is the superset of all the section bibliogra-

phies, including the Introduction and the four peer-reviewed papers.

References here are given in alphabetical order, regardless of where

they appeared.

Adrion, W. R., 1992. Research Methodology in Software Engineering. In:

Tichy, W. F., Habermann, N., Prechelt, L. (Eds.), Dagstuhl Workshop

on Future Directions in Software Engineering. ACM SIGSOFT, Schloss

Dagstuhl, pp. 36–37.

Aeinehchi, N., 2002. Do NOT Use WebSphere Unless You are BLUE. URL

http://www.theserverside.com/reviews/thread.jsp?thread id=13639

Agerbo, E., Cornils, A., 1998. How to Preserve the Benefits of Design Pat-

terns. In: OOPSLA ’98: Conference on Object Oriented Programming

Systems Languages and Applications. Vol. 33 of SIGPLAN Notices. ACM

Press, Vancouver, British Columbia, Canada, pp. 134–143.

Albin-Amiot, H., Cointe, P., Guéhéneuc, Y. G., Jussien, N., 2001. Instantiat-

ing and Detecting Design Patterns: Putting Bits and Pieces Together. In:

ASE 2001: 16th Annual International Conference on Automated Software

Engineering. IEEE CS Press, San Diego, CA, USA, pp. 26–29.

Alexander, C., 1977. A Pattern Language: Towns, Buildings, Construction.

Center for Environmental Structure. Oxford University Press, New York,

ISBN: 0195019199.

Alexander, C., 1979. The Timeless Way of Building. Center for Environmental

Structure. Oxford University Press, New York, ISBN: 0195024028.

Alexander, C., 1985. The Production of Houses. Oxford University Press,

New York, ISBN: 0195032233.

Alexander, C., Hirshen, S., Ishikawa, S., Coffin, C., Angel, S., 1969. Houses

Generated by Patterns. Center for Environmental Studies, Berkely.

205

Almaer, D., 2002. Making a Real World PetStore, TSS Newsletter #31. URL

http://www.theserverside.com/resources/article.jsp?l=PetStore

Alur, D., Crupi, J., Malks, D., 2001. Core J2EE Patterns. Prentice-Hall, Upper

Saddle River, NJ, USA, ISBN: 0130648841.

Ambler, S. W., 1998. Process Patterns. The Press Syndicate of the University

of Cambridge, Cambridge, United Kingdom, ISBN: 0521645689.

Anderson, B., 1992. Towards An Architecture Handbook. In: OOPSLA ’92:

Conference on Object Oriented Programming Systems Languages and

Applications. Vol. 27 of SIGPLAN Notices, Issue 10. ACM Press, Vancou-

ver, British Columbia, Canada, pp. 109–113.

Anonymous, 2002. Pattern Forms. URL http://c2.com/cgi/

wiki?PatternForms

Antoniol, G., Casazza, G., Di Penta, M., Fiutem, R., 2001. Object-Oriented

Design Patterns Recovery. Journal of Systems and Software 59 (2), 181–

196.

Antoniol, G., Fiutem, R., Cristoforetti, L., 1998. Using Metrics to Identify

Design Patterns in Object-Oriented Software. In: Metrics 1998: Fifth In-

ternational Software Metrics Symposium, 1998. IEEE Computer Society,

Bethesda, Maryland, USA, pp. 23–34.

Apache Jakarta Project, 2003. STRUTS Home Page. URL http://jakarta.

apache.org/struts/

Arisholm, E., 2001. Empirical Assessment of Changeability in Object-

Oriented Software. Phd thesis, University of Oslo, Norway.

Arisholm, E., Sjøberg, D., 2004. Evaluating the Effect of a Delegated Ver-

sus Centralized Control Style on the Maintainability of Object-Oriented

Software. IEEE Transactions on Software Engineering 30 (8), 521–534.

Arisholm, E., Sjøberg, D., Carelius, G. J., Lindsjørn, Y., 2002a. A Web-Based

Support Environment for Software Engineering Experiments. Nordic

Journal of Computing 9 (4), 231–247.

Arisholm, E., Sjøberg, D., Carelius, G. J., Lindsjørn, Y., 2002b. SESE: An Exper-

iment Support Environment for Evaluating Software Engineering Tech-

nologies. In: NWPER 2002: Tenth Nordic Workshop on Programming and

Software Development Tools and Techniques. Copenhagen, Denmark,

pp. 81–98.

Arisholm, E., Sjøberg, D. I. K., Jørgensen, M., 2001. Assessing the Change-

ability of Two Object-Oriented Design Alternatives—A Controlled Ex-

periment. Empirical Software Engineering 6 (3), 231–277.

206

Badros, G. J., Notkin, D., 2000. A Framework for Preprocessor-Aware C

Source Code Analyses. Software-Practice & Experience 30 (8), 907–924.

Baer, W. C., 2002. The Institution of Residential Investment in Seventeenth-

Century London. Business History Review 76 (Autumn 2002), 515–552.

Balanyi, Z., Ferenc, R., 2003. Mining Design Patterns from C++ Source Code.

In: ICSM’03: International Conference on Software Maintenance. IEEE

Computer Society, Amsterdam, The Netherlands, pp. 305–315.

Bansiya, J., June 1998 1998. Automating Design-Pattern Identification. Dr.

Dobb’s Journal 23 (6), 20–2, 24, 26, 28.

Beck, K., 1987. Using a Pattern Language for Programming. In: Kerth, N. L.,

Hogg, J., Stein, L., Porter, H. H. (Eds.), OOPSLA’87: Addendum to the

Proceedings. ACM Press, Orlando, Florida, USA, p. 16.

Beck, K., 1999. Extreme Programming Explained: Embrace Change. Addison

Wesley, Boston, MA, USA, ISBN: 0201616416.

Beck, K., Beedle, M., Bennekum, A. v., Cockburn, A., Cunningham, W.,

Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Mar-

ick, B., Martin, R. C., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D.,

2001. Agile Manifesto. URL http://www.agilemanifesto.org/

Bernus, P., Nemes, L., 1996. A Framework to Define a Generic Enterprise

Reference Architecture and Methodology. Computer Integrated Manufac-

turing Systems 9 (3), 179–191.

Berry, C., Carnell, J., Juric, M., Kunnumpurath, M., Nashi, N., Romanosky, S.,

2002. J2EE Design Patterns Applied. Wrox Press Ltd, Hoboken, NJ, USA,

ISBN: 1861005288.

Bieman, J., Jain, D., Yang, H., 2001. OO Design Patterns, Design Structure,

and Program Changes: An Industrial Case Study. In: ICSM 2001: IEEE

International Conference on Software Maintenance, 2001. IEEE Computer

Society, Firenze, Italy, pp. 580–589.

Bieman, J., Straw, G., Wang, H., Munger, P., Alexander, R., 2003. Design Pat-

terns and Change Proneness: An Examination of Five Evolving Systems.

In: METRICS ’03: Ninth International Software Metrics Symposium,

2003. IEEE Computer Society, Sydney, Australia, pp. 40–49.

Black, E., 2002. IBM and the Holocaust. Time Warner Paperback, ISBN:

0751531995.

Boehm, B., 1986. A Spiral Model of Software Development and Enhance-

ment. ACM SIGSOFT Software Engineering Notes 11 (4), 14–24.

Booch, G., 1993. Object-Oriented Analysis and Design, 2nd Edition. Pearson

207

Education, Upper Saddle River, NJ, USA, ISBN: 0805353402.

Borchers, J., 2001. A Pattern Approach to Interaction Design. John Wiley &

Sons, Hoboken, NJ, USA, ISBN: 0471498289.

Brooks, F. P. J., 1987. No Silver Bullet: Essence and Accidents of Software

Engineering. IEEE Computer 20 (4), 10–19.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., 1996.

Pattern-Oriented Software Architecture. Wiley, Chichester, ISBN: 0 471

95869 7.

Christensen, L. B., 2001. Experimental Methodology, 8th Edition. Allyn &

Bacon, Boston, MA, USA, ISBN: 0-205-30832-5.

Chu, W. C., Lu, C. W., Shiu, C. P., He, X. D., 2000. Pattern-Based Software

Reengineering: A Case Study. Journal of Software Maintenance—Research

and Practice 12 (2), 121–141.

Ciancarini, P., Tolksdorf, R., Vitali, F., Rossi, D., Knoche, A., 1998. Coordi-

nating Multiagent Applications on the WWW: A Reference Architecture.

IEEE Transactions on Software Engineering 24 (5), 362–375.

Coplien, J., Schmidt, D., 1995. Pattern Languages of Program Design. Addi-

son Wesley, Boston, MA, USA, ISBN: 0201607344.

DeGrace, P., Stahl, L. H., 1991. Wicked Problems, Righteous Solutions.

Prentice-Hall, Inc., Englewood Cliffs, NJ, USA, ISBN: 013590126X.

DeMaris, A., 1991. A Framework for the Interpretation of First-Order Inter-

action in Logit Modeling. Psychological Bulletin 110 (3), 557–570.

Diggle, P., Liang, K., Zeger, S., 1994. The Analysis of Longitudinal Data,

2nd Edition. Oxford University Press, Oxford, United Kingdom, ISBN:

0198524846.

Ditzel, C., 2003. Charles’s Corner: Java Technology Pointers. URL http://

java.sun.com/jugs/pointers.html

Douglass, B. P., 2002. Real-Time Design Patterns: Robust Scalable Archi-

tecture for Real-Time Systems. Addison-Wesley, Boston, MA, USA, ISBN:

0201699567.

Efron, B., Tibshirani, R. J., 1993. An Introduction to the Bootstrap. Mono-

graphs on Statistics and Applied Probability. Chapman & Hall, London,

United Kingdom, ISBN: 0-412-04231-2.

Ekström, U., 2000. Design Patterns for Simulations in Erlang/OTP. Master’s

thesis, Uppsala University, Sweden.

Feynman, R., 1997. Surely You’re Joking, Mr Fenyman. W. W. Norton & Com-

208

pany, New York, USA, ISBN: 0393316041.

Florijn, G., Meijers, M., van Winsen, P., 1997. Tool Support for Object-

Oriented Patterns. In: ECOOP ’97: European Conference on Object-

Oriented Programming. Vol. 1241 of Lecture Notes in Computer Science.

Springer-Verlag Heidelberg, Heidelberg, pp. 472–495.

Fowler, M., 2002. Patterns of Enterprise Application Architecture. Addison

Wesley Professional, Boston, MA, USA, ISBN: 0321127420.

France, R., Kim, D.-K., Ghosh, S., Song, E., 2004. A UML-Based Pattern Speci-

fication Technique. IEEE Transactions on Software Engineering 30 (3), 193–

206.

Frederick, C., 2003. Extreme Programming: Growing a Team Horizontally.

In: Marchesi, M., Succi, G. (Eds.), XP/Agile Universe 2003. Vol. 2573 of

Lecture Notes in Computer Science. Springer-Verlag Heidelberg, pp. 9–17.

Gabriel, R., 1998. The Failure of Pattern Languages. In: Rising, L. (Ed.), The

Patterns Handbook. Cambridge University Press, Melbourne, Australia,

pp. 333–343, ISBN: 0-521-64818-1.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns: El-

ements of Reusable Object-Oriented Software. Addison-Wesley, Boston,

MA, USA, ISBN: 0201633612.

Gardner, K. M., Rush, A., Crist, M. K., Konitzer, R., Teegarden, B., 1998. Cog-

nitive Patterns. Cambridge University Press, Cambridge, United Kingdom,

ISBN: 0-521-64998-6.

Gilb, T., 1985. Evolutionary Delivery Versus the ”Waterfall Model”. ACM

SIGSOFT Software Engineering Notes 10 (3), 49–61.

Guéhéneuc, Y.-G., Albin-Amiot, H., 2001. Using Design Patterns and Con-

straints to Automate the Detection and Correction of Inter-Class Design

Defects. In: TOOLS 39: 39th International Conference and Exhibition on

Technology of Object-Oriented Languages and Systems, 2001. Santa Bar-

bara, CA, USA, pp. 296–305.

Guimaraes, T., 1983. Managing Application Program Maintenance Expendi-

tures. Communications of the ACM 26 (10), 739–746.

Hallsteinsen, S., Swane, E., 2002. Handling the Diversity of Networked De-

vices by Means of a Product Family Approach. In: Software Product-

Family Engineering. Vol. 2290 of Lecture Notes in Computer Science.

Springer-Verlag Heidelberg, pp. 264–281.

Haugland, S., 2003. Dating Design Patterns. Published by Solveig Haugland,

ISBN: 0974312002.

209

Henry, E., Faller, B., 1995. Large-Scale Industrial Reuse to Reduce Cost and

Cycle Time. IEEE Software 12 (5), 47–53.

Hosmer, D. W., Lemeshow, S., 2000. Applied Logistic Regression, 2nd Edi-

tion. John Wiley & Sons Inc., New York, USA, ISBN: 0471356328.

Huston, B., 2001. The Effects of Design Pattern Application on Metric

Scores. Journal of Systems and Software 58 (3), 261–269.

Infragistics, 2003. Expense Application—Reference Application. URL

http://www.infragistics.com/products/thinreference.asp

ISO, 1998. ISO/IEC 10746: Information Technology—Open Distributed

Processing – Reference Model. URL http://www.iso.org/iso/en/

CombinedQueryResult.CombinedQueryResult?queryString=10746

Jaccard, J., 2001. Interaction Effects in Logistic Regression. Quantitative ap-

plications in the social sciences. Sage Publications, Thousand Oaks, CA,

USA, ISBN: 0761922075.

Jacobson, I., Booch, G., Rumbaugh, J., 1999. The Unified Software Devel-

opment Process. Addison-Wesley Professional, Boston, MA, USA, ISBN:

0201571692.

Kassem, N., 2000. Designing Enterprise Applications with the J2EE Plat-

form. Addison-Wesley, Boston, MA, USA, ISBN: 0201702770.

Keller, R., Schauer, R., Robitaille, S., Pagé, P., 1999. Pattern-Based Reverse-

Engineering of Design Components. In: ICSE ’99: 1999 International

Conference on Software Engineering. ACM Press, Los Angeles, CA, USA,

pp. 226–235.

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C.,

El-Emam, K., Rosenberg, J., 2002. Preliminary Guidelines for Empirical

Research in Software Engineering. IEEE Transactions on Software Engi-

neering 28 (8), 721–734.

Kleinbaum, D. G., 1994. Logistic Regression : A Self-Learning Text. Statistics

in the Health Sciences. Springer-Verlag Heidelberg, New York, ISBN: 0-387-

94142-8.

Kramer, C., Prechelt, L., 1996. Design Recovery by Automated Search for

Structural Design Patterns in Object-Oriented Software. In: Third Work-

ing Conference on Reverse Engineering, 1996. IEEE Computer Society,

Monterey, CA, USA, pp. 208–215.

Larman, C., 2001. Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design and the Unified Process, 2nd Edition. Pren-

tice Hall, Upper Saddle river, NJ, USA, ISBN: 0130925691.

210

Liang, K., Zeger, S., 1986. Longitudinal Data Analysis Using Generalized

Linear Models. Biometrika 73, 13–22.

Lientz, B. P., Swanson, E. B., Tompkins, G. E., 1978. Characteristics of Applica-

tion Software Maintenance. Communications of the ACM 21 (6), 466–471.

Lindsay, R., Ehrenberg, A., 1993. The Design of Replicated Studies. The

American Statistician 47 (3), 217–228.

McCullagh, P., Nelder, J., 1989. Generalized Linear Models. Chapman and

Hall, New York, USA, ISBN: 0412317605.

McIlroy, D., 1968. Mass Produced Software Components. In: Naur, P., Ran-

dell, B., Buxton, J. (Eds.), Software Engineering: Concepts and Tech-

niques. NATO Conferences. Petrocelli, Garmisch, Germany, pp. 138–156.

Microsoft, Inc, 2003a. Application Architecture for .NET: Designing Applica-

tions & Services. Microsoft Press, Redmond, WA, USA, ISBN: 0735618372.

Microsoft, Inc, 2003b. Duwamish 7.0. URL http://msdn.microsoft.

com/netframework/downloads/samples/?pull=/library/en-us/dnbda/

html/bdasampduwam7.asp

Microsoft, Inc, 2003c. Microsoft .NET Pet Shop 2.0. URL http://msdn.

microsoft.com/netframework/downloads/samples/?pull=/library/

en-us/dnbda/html/bdasamppet.asp

Microsoft, Inc, 2004. C# Programmer’s Reference: Foreach, in. URL

http://msdn.microsoft.com/library/default.asp?url=/library/

en-us/csref/html/vclrftheforeachstatement.asp

MiniTAB, Inc, 2003. MiniTab 13.32. URL http://www.minitab.com

Neumann, G., Zdun, U., 2002. Pattern-Based Design and Implementation of

An XML and RDF Parser and Interpreter: A Case Study. In: ECOOP ’02:

16th European Conference on Object-Oriented Programming. Vol. 2374 of

Lecture Notes in Computer Science. Springer-Verlag Heidelberg, University

of Mlaga, Spain, pp. 392–414.

Ngu, A., 2003. CS5369A Enterprise Application Integration. URL http:/

/www.cs.swt.edu/ hn12/teaching/cs5369/2003Spring/admin/intro.

html

Öberg, R., 2003. Review of ”The Petstore Revisited: J2EE vs .NET Ap-

plication Server Performance Benchmark”. URL http://www.google.

com/search?q=cache:8OPCFEFDFd0J:www.dreambean.com/petstore.

html+petstore+java+experience&hl=en&ie=UTF-8

Object Management Group, 1995 1995. CORBAServices: Common Object

Services Specification.

211

Object Management Group, 2004. UML 2.0 Specifications. URL http://www.

omg.org/technology/documents/modeling spec catalog.htm#UML

Oracle, Inc, 2003. Oracle9iAS Containers for J2EE User’s Guide Release 2

(9.0.2). URL http://otn.oracle.com/tech/java/oc4j/doc library/902/

A95880 01/html/toc.htm

Perforce, Inc, 2004. Perforce Software Configuration Management System.

URL http://www.perforce.com/

Peters, L. J., Tripp, L. L., 1976. Is Software Design Wicked? Datamation 22 (5),

127–.

Prechelt, L., 2000. An Empirical Study of Working Speed Differences Be-

tween Software Engineers for Various Kinds of Task. Submitted to IEEE

Transactions on Software Engineering, to be revised.

Prechelt, L., Unger, B., 1999. Methodik und Ergebnisse einer Experimen-

treihe über Entwurfsmuster. Informatik - Forschung und Entwicklung

14 (2), 74–82.

Prechelt, L., Unger, B., Tichy, W. F., Brössler, P., Votta., L. G., 2001a. A Con-

trolled Experiment in Maintenance Comparing Design Patterns to Sim-

pler Solutions. IEEE Transactions on Software Engineering 27 (12), 1134–

1144.

Prechelt, L., Unger, B., Tichy, W. F., Brössler, P., Votta., L. G., 2001b. A Con-

trolled Experiment in Maintenance Comparing Design Patterns to Sim-

pler Solutions. IEEE Transactions on Software Engineering 27 (12), 1134–

1144.

Prechelt, L., Unger-Lamprecht, B., Philippsen, M., Tichy, W. F., 2002. Two Con-

trolled Experiments Assessing the Usefulness of Design Pattern Docu-

mentation in Program Maintenance. IEEE Transactions on Software Engi-

neering 28 (6), 595–606.

Rational, Inc, 2003. PearlCircle Online Auction for J2EE. URL http://www.

rational.com/rda/wn 2002.jsp?SMSESSION=NO#pearlcircle

Reimer, D., Srinivasan, H., 2003. Analyzing Exception Usage in Large Java

Applications. In: Romanovsky, A., Dony, C., Knudsen, J. L., Tripathi, A.

(Eds.), ECOOP ’03: Workshop: Exception Handling in Object Oriented

Systems: Towards Emerging Application Areas and New Programming

Paradigms. Darmstadt, Germany, pp. 10–19.

Rising, L., 1998. The Patterns Handbook. Cambridge University Press, Cam-

bridge, United Kingdom, ISBN: 0521648181.

Rising, L., Firesmith, D. G., 2001. Design Patterns in Telecommunica-

212

tions Software. Cambridge University Press, Cambridge, United Kingdom,

ISBN: 0521790409.

Rittel, H. W. J., Webber, M. M., 1973. Dilemmas in a General Theory of Plan-

ning. Policy Sciences 4 (2), 155–169.

Rost, J., 2004. Is ”Factory Method” Really a Pattern? ACM SIGSOFT Software

Engineering Notes 29 (5), 1–1.

Schauer, R., Keller, R., 1998. Pattern Visualization for Software Comprehen-

sion. In: IWPC ’98: 6th International Workshop on Program Comprehen-

sion, 1998. pp. 4–12.

Schmidt, D., 2002. How to Hold a Writer’s Workshop. URL http://www.cs.

wustl.edu/ schmidt/writersworkshop.html

Schmidt, D., Stephenson, P., 1995. Experience Using Design Patterns to

Evolve Communication Software Across Diverse OS Platforms. In:

ECOOP ’95: European Conference on Object-Oriented Programming.

Vol. 952 of Lecture Notes in Computer Science. Springer-Verlag Heidelberg,

Århus, Denmark, pp. 399–423.

Schmidt, D. C., 1994. Reactor: An Object Behavioural Pattern for Concurrent

Event Demultiplexing and Event Handler Dispatching. In: Coplien, J. O.,

Schmidt, D. C. (Eds.), PLoP 94. Addison-Wesley, pp. 529–545.

Scientific Toolworks Inc., 2003. Understand for C++. URL http://www.

scitools.com/

SGI, 2004. Standard Template Library Programmer’s Guide. URL http://

www.sgi.com/tech/stl/

Singh, I., Stearns, B., Johnson, M., Team, E., 2002. Designing Enterprise Ap-

plications with the J2EE Platform. Addison-Wesley, Boston, MA, USA,

ISBN: 0201787903.

Sjøberg, D., Anda, B., Arisholm, E., Dybå, T., Jørgensen, M., Karahasanovic,

A., Koren, E., Vokáč, M., 2002. Conducting Realistic Experiments in Soft-

ware Engineering. In: ISESE 2002: First International Symposium on Em-

pirical Software Engineering. IEEE Computer Society, Nara, Japan, pp. 17–

26.

Sjøberg, D., Anda, B., Arisholm, E., Dybå, T., Jørgensen, M., Karahasanovic,

A., Vokáč, M., 2003. Challenges and Recommendations When Increasing

the Realism of Controlled Software Engineering Experiments. In: Con-

radi, R., Wang, A. I. (Eds.), ESERNET 2001-2002. Vol. 2765 of Lecture Notes

in Computer Science. Springer-Verlag Heidelberg, pp. 24–38.

Sjøberg, D. I. K., Kampenes, V. B., Hannay, J. E., Hansen, O., Karahasanovic,

213

A., Liborg, N.-K., Rekdal, A. C., 2004. A Survey of Controlled Experiments

in Software Engineering. Submitted to IEEE Transactions on Software En-

gineering.

Smith, D., Robertson, W., Diggle, P., 1996. Object-Oriented Software for

the Analysis of Longitudinal Data in S. Tech. Rep. Technical Report

MA96/192, Department of Mathematics and Statistics, University of Lan-

caster.

Sun Microsystems, Inc, 2002. J2EE Patterns Catalog. URL http://java.sun.

com/blueprints/patterns/j2ee patterns/index.html

Sun Microsystems, Inc, 2003. Java Pet Store Demo 1.1.2. URL http://java.

sun.com/blueprints/code/jps11/docs/index.html

Sun Microsystems, Inc, 2004. Java API Documentation: Interface

Collection. URL http://java.sun.com/j2se/1../docs/api/java/util/

Collection.html

TechExcel, 2004. DevTrack Defect Tracking Tool. URL http://www.

techexcel.com/products/devtrack/dtoverview.html

The Hillside Group, 2004a. Design Patterns Conferences. URL http://

hillside.net/conferences/

The Hillside Group, 2004b. Shepherding. URL http://hillside.net/

shepherding.html

Thomas, W. T., Delis, A., Basili, V. R., 1995. An Analysis of Errors in a Reuse-

Oriented Development Environment. Tech. Rep. CS-TR-3424, University

of Maryland, Institute of Advanced Computer Studies, USA.

van der Linden, F., 2002. Software Product Families in Europe: The Esaps &

Café Projects. IEEE Software 19 (4), 41–49.

van der Linden, F., Muller, J., 1995. Composing Product Families from

Reusable Components. In: 1995 International Symposium and Workshop

on Systems Engineering of Computer Based Systems, 1995. IEEE Com-

puter Society, Tucson, AZ, USA, pp. 35–40.

Vokáč, M., 2005a. A Tool for Recovering Design Patterns from C++ Code,

and its Application in a Case Study. Journal of Object Technology, To ap-

pear July/August 2005.

Vokáč, M., 2005b. Defect Frequency and Design Patterns: An Empirical

Study of Industrial Code. IEEE Transactions on Software Engineering Ac-

cepted for publication.

Vokáč, M., Jensen, O., 2004. Using a Reference Application with Design Pat-

terns to Produce Industrial Software. In: Bomarius, F., Iida, H. (Eds.),

214

Product Focused Software Process Improvement. Vol. 3009 of Lecture

Notes in Computer Science. Springer-Verlag Heidelberg, Kansai Science

City, Japan, pp. 333–347.

Vokáč, M., Tichy, W., Sjøberg, D. I. K., Arisholm, E., Aldrin, M., 2004. A

Controlled Experiment Comparing the Maintainability of Programs De-

signed with and Without Design Patterns: A Replication in a Real Pro-

gramming Environment. Empirical Software Engineering 9 (3), 149–195.

Whitcomb, M., Clark, B., 1989. Pragmatic Definition of An Object-Oriented

Development Process for Ada. In: Tri-Ada ’89: Ada Technology in Con-

text: Application, Development, and Deployment. ACM Press, Pitts-

burgh, Pennsylvania, United States, pp. 380–399.

Williams, R. D., 1975. Managing the Development of Reliable Software. In:

International Conference on Reliable Software. ACM Press, Los Angeles,

California, pp. 3–8.

Yacoub, S. M., Ammar, H. H., 2004. Pattern Oriented Analysis and Design

(POAD): Composing Patterns to Design Software Systems. Addison Wes-

ley, Boston, MA, USA, ISBN: 0201776405.

Yin, R., 2003. Case Study Research, Design and Methods, 3rd Edition. Sage

Publications, Thousand Oaks, CA, USA, ISBN: 0-7619-2552-X.

Yourdon, E., 1976. How to Manage Structured Programming. Prentice Hall

PTR, Indianapolis, Indiana, USA, ISBN: 0917072022.

Yourdon, E., 1999. Death March. Prentice Hall PTR, Indianapolis, Indiana,

USA, ISBN: 0130146595.

215

216

Bibliographic index

This is an index of literature references. It is ordered alphabetically by

author and lists the page or pages where this work is referred to in the

text.

Adrion (1992), 25

Aeinehchi (2002), 129

Agerbo and Cornils (1998), 8

Albin-Amiot et al. (2001), 34, 150,

183

Alexander et al. (1969), 16

Alexander (1977), 15, 16

Alexander (1978), 50

Alexander (1979), 15–17

Alexander (1985), 16

Alexander (1987), 50

Almaer (2002), 121

Alur et al. (2001), 8, 115

Ambler (1998), 9, 20

Anderson (1992), 17

Anonymous (2002), 17

Antoniol et al. (1998), 34, 150, 182,

184

Antoniol et al. (2001), 34, 150, 152,

182

Apache Jakarta Project (2003), 116

Arisholm and Sjøberg (2004), 29, 32

Arisholm et al. (2001), 100

Arisholm et al. (2002a), 97

Arisholm et al. (2002b), 96

Arisholm (2001), 103

Badros and Notkin (2000), 152, 191

Baer (2002), 14

Balanyi and Ferenc (2003), 34, 150,

152, 164, 183

Bansiya (1998), 34, 150, 181

Beck et al. (2001), 4, 6

Beck (1987), 17

Beck (1999), 4

Bernus and Nemes (1996), 114

Berry et al. (2002), 8

Bieman et al. (2001), 33, 143, 157,

167

Bieman et al. (2003), 33, 142, 143,

167, 168

Black (2002), 3

Boehm (1986), 6

Booch (1993), 6

Borchers (2001), 8, 9

Brooks (1987), 24, 29, 116

Buschmann et al. (1996), 33, 114,

142, 188

Buschmann et al. (1996), 50

Christensen (2001), 28

Chu et al. (2000), 33, 144

Ciancarini et al. (1998), 116

Coplien and Schmidt (1995), 8

DeGrace and Stahl (1991), 6

DeMaris (1991), 165

Diggle et al. (1994), 63

Ditzel (2003), 121

Douglass (2002), 9

Efron and Tibshirani (1993), 57

217

Ekström (2000), 9

Feynman (1997), 3

Florijn et al. (1997), 34, 150, 152, 181

Fowler (2002), 8, 19

France et al. (2004), 7, 184

Frederick (2003), 126

Gabriel (1998), 16

Gamma et al. (1995), 8, 9, 17, 18,

114, 141, 146, 179, 185,

187, 201

Gamma et al. (1995), 50

Gardner et al. (1998), 9

Gilb (1985), 6

Guéhéneuc and Albin-Amiot

(2001), 34, 142, 150, 183

Guimaraes (1983), 9

Hallsteinsen and Swane (2002),

114, 115

Haugland (2003), 9

Henry and Faller (1995), 122

Hosmer and Lemeshow (2000), 165

Huston (2001), 146

ISO (1998), 118

Infragistics (2003), 116

Jaccard (2001), 165

Jacobson et al. (1999), 4

Kassem (2000), 115

Keller et al. (1999), 34, 150, 183

Kitchenham et al. (2002), 28

Kitchenham et al. (2001), 99

Kleinbaum (1994), 157

Kramer and Prechelt (1996), 34,

150, 181

Larman (2001), 33, 126, 142

Liang and Zeger (1986), 63

Lientz et al. (1978), 9

Lindsay and Ehrenberg (1993), 31,

32, 57

McCullagh and Nelder (1989), 63

McIlroy (1968), 115

Microsoft, Inc (2003a), 115

Microsoft, Inc (2003b), 116

Microsoft, Inc (2003c), 116

Microsoft, Inc (2004), 191

MiniTAB, Inc (2003), 155, 199

Neumann and Zdun (2002), 33, 144

Ngu (2003), 121

Object Management Group (1995),

188

Object Management Group (2004),

4

Oracle, Inc (2003), 124

Perforce, Inc (2004), 149

Peters and Tripp (1976), 4

Prechelt et al. (2001), 33, 142

Prechelt et al. (2002), 33

Prechelt and Unger (1999), 33, 142

Prechelt et al. (2001), 50, 57, 77, 104

Prechelt (2000), 90

Rational, Inc (2003), 116

Reimer and Srinivasan (2003), 121

Rising and Firesmith (2001), 9

Rising (1998), 33, 114, 142

Rittel and Webber (1973), 4

Rost (2004), 7

SGI (2004), 191

Schauer and Keller (1998), 34, 150,

183

Schmidt and Stephenson (1995),

33, 144

Schmidt (1994), 188

Schmidt (2002), 8

Scientific Toolworks Inc. (2003),

151, 193

Singh et al. (2002), 120

Sjøberg et al. (2002), 28, 31

Sjøberg et al. (2003), 28

Sjøberg et al. (2004), 30, 31

Sjøberg et al. (2002), 57

Smith et al. (1996), 63

Sun Microsystems, Inc (2002), 115,

117

218

Sun Microsystems, Inc (2003), 11,

114, 116, 121

Sun Microsystems, Inc (2004), 191

TechExcel (2004), 149

The Hillside Group (2004a), 8

The Hillside Group (2004b), 8

Thomas et al. (1995), 115

Vokáč et al. (2004), 10, 11, 30, 31, 34,

143

Vokáč and Jensen (2004), 10, 35

Vokáč (2005), 150

Vokáč (2005a), 10, 34, 35

Vokáč (2005b), 10, 34, 35

Whitcomb and Clark (1989), 6

Williams (1975), 6

Yacoub and Ammar (2004), 8

Yin (2003), 27, 118

Yourdon (1976), 6

Yourdon (1999), 104

Öberg (2003), 121

van der Linden and Muller (1995),

116

van der Linden (2002), 116

219

